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Abstract

In urban areas the deterioration of air quality as a result of fugitive dust receives less attention than the

more prominent traffic and industrial emissions. We assessed whether fugitive dust emission sources in the

neighbourhood of an air quality monitor are predictors of ambient PM10 concentrations on days characterized

by strong local winds. An ensemble maximum likelihood method is developed for land cover mapping in the

vicinity of an air quality station using SPOT 6 multi-spectral images. The ensemble maximum likelihood

classifier is developed through multiple training iterations for improved accuracy of the bare soil class. Five

primary land cover classes are considered, namely built-up areas, vegetation, bare soil, water and ‘mixed

bare soil’ which denotes areas where soil is mixed with either vegetation or synthetic materials. Preliminary

validation of the ensemble classifier for the bare soil class results in an accuracy range of 65–98%. Final

validation of all classes results in an overall accuracy of 78%. Next, cluster analysis and a varying intercepts

regression model are used to assess the statistical association between land cover, a fugitive dust emissions

proxy and observed PM10. We found that land cover patterns in the neighbourhood of an air quality station

are significant predictors of observed average PM10 concentrations on days when wind speeds are conducive

for dust emissions. This study concludes that in the absence of an emissions inventory for ambient particulate

matter, PM10 emitted from dust reservoirs can be statistically accounted for by land cover characteristics.

This supports the use of land cover data for improved prediction of PM10 at locations without air quality

monitoring stations.
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1. Introduction

Particulate matter (PM) is a highly erratic pollutant in urban landscapes due to its formation from both

mechanical and chemical processes, sensitivity to meteorological conditions, volatile residence times as a

result of sedimentation and increased likelihood of impaction given the larger built-up footprint in urban ar-

eas [1, 2, 3, 4]. Chemical processes refer to the formation of particles through condensation of gases produced5

by incomplete combustion as industrial, vehicle and biomass burning fumes [5]. Mechanical formation of PM

refers to direct emission of particles as dust from: agricultural fields, construction sites, unpaved roads and

yards, mining and quarrying sites including mine residue deposits (MRDs) or “mine dumps”, re-suspension

from vehicle tyre and road surface interactions, etc. [6, 7]. This is especially relevant in urban landscapes

of developing countries where areas of bare soil in the form of active surface mining areas and residue de-10

posits, unpaved roads and yards in informal settlements as well as natural bare ground, are intertwined

with impervious surfaces [8]. Dust in this context is often reported as a “health nuisance” especially in

communities close to mine residue deposits. With human settlement growth near such sources, quantitative

studies of the association between dust emissions, monitored particulate matter concentrations and health

are necessary [9, 10, 8]. Apart from aeolian emissions from bare ground, there are process-based fugitive15

dust emission sources such as material-altering industrial operations, agricultural tilling and disturbances on

roads and parking lots (paved and unpaved).

High spatial resolution satellite images are an important source of urban land cover data [11]. There are

various approaches for extracting land cover classes from imagery and a common technique is pixel-based20

supervised maximum likelihood (ML) classification [12, 13]. [13] concluded that additional dimensions in

the form of texture, ancillary, multi-time or multi-angle data led to the greatest improvements in overall

pixel-based classification accuracy. Another way to introduce additional information is by training multiple

classifiers on the same problem with the purpose of combining the outputs to achieve greater accuracy than

the individual classification result. This method is known as ensemble classification [14]. In a recent study25

by [15], an ensemble clustering routine was developed for improving class means and covariances used in

initializing an expectation-maximization classification algorithm. However, this self-training cluster ensem-

ble prior to ML classifier was outperformed by a supervised ML classifier, with the latter achieving 97.2%

overall accuracy. Such superior performances of the ML classifier, even in cases of less representative training

samples, justify its popularity in land cover mapping, in terms of both direct application and development30

of advanced classification procedures [16].

Land-use regression (LUR) models are a popular tool in air pollution exposure assessments [17, 18, 3].

LUR models achieve the objective of mapping air quality by using the correlation between pollutants of
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interest and land-use indicators such as population density, traffic intensity and distances to known pol-35

lution sources [1, 3]. A varying intercept model is a regression model that is suitable when the data are

clustered. It is common in applications of this model that grouping factors are known [19]. Given no specific

grouping factor, clusters can be identified by applying a k-means clustering technique [20] prior to regression

modelling. The strengths of the k-means technique include the capability of handling large data sets [21, 22]

and ease of adaptation into advanced clustering procedures aimed at superior data handling efficiency [23].40

A k-means cluster analysis was used to transform land cover classification outputs derived from satellite im-

agery with ancillary spatial data into landscape metrics for inference about determinants of rural land cover

change in [24] and in creating a multi-scale trans-border oriented landscape typology for Belgium in [21]. A

well-known difficulty with clustering is the interpretation of the clusters, therefore other information can be

useful for describing the clusters.45

The objective in this study is to assess whether there is a statistical association between land cover and

observed PM10 concentrations as a basis for using spatially extensive land cover data to predict PM10 in

locations without air quality monitoring stations. For this purpose, we propose a varying intercept model

using land cover and observed PM10 data. In the absence of recent high spatial resolution land cover data, we50

propose an ensemble maximum likelihood classification method characterized by the use of multiple training

sets to capture the heterogeneity in local sources of fugitive dust emissions.

The paper is presented as follows: Section 2 consists of details on the study area and data; the ensem-

ble classification and the k-means prior to varying intercepts modelling methods are presented in Section 3;55

the results are in Section 4; the discussion in Section 5 and the concluding remarks in Section 6.

2. Materials

2.1. The study area

Air quality monitoring stations (Figure 1) are located in the Gauteng province of South Africa. From the 2011

census, nearly one million households were living in informal dwellings in Gauteng, where solid biofuels, gas or60

paraffin provided energy for cooking (75%), heating (58%) and lighting (73%) due to lack of electricity [25, 26].

Gauteng’s traffic corridors carry large volumes of passenger and freight vehicles because half of South Africa’s

main freight corridors which transport on average 246 metric tonnes of freight annually are located in the

province [27]. Prevailing industrial activities include mining, mineral and metal processing. Gauteng is in a

grassland biome and is dominated by soils (acrisols, leptosols and lixisols) with low nutrient retention capacity65

which are susceptible to wind erosion [28]. The colour tone of soils found predominantly in the province range

from reddish brown (northern Gauteng) to light yellow at locations with high anthropogenic disturbances as
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well as fine particle ‘black-clay’ soils (vertisols) south of the province. Air pollution sources in the study area

include vehicles, industries and domestic fuel burning activities [29, 30], however our interest is on relating

observed ambient PM10 concentration to land cover characteristics particularly as they relate to fugitive70

dust emissions. Therefore, variability in surface properties of soils becomes an important consideration in

identifying dust emission reservoirs from optical satellite images.

2.2. Land cover imagery and air quality data

Daily PM10 and wind data from 23 air quality stations in Gauteng for the period starting March 2011 until

February 2015 were used. The dominant pollution source classification of these stations by the custodians75

of the data is as follows: urban background (3 stations), industry (6 stations), domestic (13 stations) and

traffic (4 stations). High spatial resolution multi-spectral images without panchromatic sharpening were

obtained from the South African National Space Agency (SANSA) and used for land cover mapping. These

are SPOT 6 multi-spectral images with 6 m ground sampling distance. The images had been orthorecti-

fied using ground control points, 50 cm aerial reference imagery and a 2 m digital elevation model. They80

were radiometrically calibrated implying that sensor-received light radiances were recomputed to the top-

of-atmosphere (TOA) normalized reflectance. The effect of panchromatic sharpening would have been an

increase in the spatial resolution of the images to 1.5 m, but the unsharpened images were used. Wavelengths

for SPOT 6 bands on the electromagnetic spectrum: Blue (0.455 − 0.525 µm); Green (0.530 − 0.590 µm);

Red (0.625− 0.695 µm); NIR (0.760− 0.890 µm). The images are dated 17 March 2013 and 17 April 2013,85

where the latter image covers four stations located south of the province.

The purpose of land cover mapping in this case is to provide inputs for statistically assessing the asso-

ciation between measured PM10 concentrations and sources of fugitive dust emissions. According to [31],

wind-blown dust can reduce visibility to less than 200 m during severe dust storms to 10 km during episodes90

of local strong winds. Further, the travel distance associated with a 10 µm aerodynamic diameter particle

given 3 m s−1 wind speed is 1 km which rapidly increases to 4 km for smaller particles of diameter 5 µm [6].

Therefore, we focus on an area that is limited to a 4 km radius from the location of an air quality station

(Figure 1). This corresponds to the upper bound of the neighbourhood scale (500 m − 4 km) commonly

applied in intra-urban air pollution modelling and emission source apportionment assessments [6, 32]. [32]95

considered the radius to be a free parameter and they found 2 km radii to be optimal for maintaining site-

specific character of the CORINE land cover class distribution and discriminating between urban areas of

different sizes. We selected seven monitoring areas (Figure 1) for developing the classifier. These areas are

representative of variations in dominant emission sources of PM10, land cover and soil types in the province

(Figure 2, Table 1).100
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Figure 1: All 23 air quality monitoring stations are located within Gauteng’s provincial boundaries, but for classifier devel-

opment, the seven circular areas are shown with the Bodibeng, Booysens, Pretoria West, Tembisa, Newtown, Diepkloof and

Kliprivier air quality stations located at their respective centres

5



(a
)

B
o
d

ib
en

g
(b

)
B

o
o
y
se

n
s

(c
)

P
T

A
W

es
t

(d
)

T
em

b
is

a

(e
)

N
ew

to
w

n
(f

)
D

ie
p

k
lo

o
f

(g
)

K
li
p

ri
v
ie

r

F
ig

u
re

2
:

C
ir

cu
la

r
a
re

a
s

w
it

h
a
n

a
ir

q
u

a
li
ty

m
o
n

it
o
ri

n
g

st
a
ti

o
n

lo
ca

te
d

a
t

th
e

ce
n
tr

e
(y

el
lo

w
p

o
in

ts
)

o
f

ea
ch

ci
rc

u
la

r
a
re

a
.

P
o
in

t
lo

ca
ti

o
n

s
fo

r
p

ix
el

s
ch

o
se

n
fo

r
v
a
li
d

a
ti

n
g

b
a
re

so
il

cl
a
ss

a
re

ex
p

re
ss

ed
in

b
ri

g
h
t

g
re

en

6



3. Methods

3.1. A land cover classification procedure for increased bare soil class precision

Land cover classification is undertaken with interest in basic land cover types, namely vegetation (V), bare

soil (BS), built-up (BU) and water bodies (W). A fifth class for mixed bare soil areas (m-BS) which are

defined by mixture of bare ground and grass (typically degraded) or synthetic materials is derived in the

aggregation step of the ensemble classifier. The ensemble classification output consists of aggregating output

from three iterations of maximum likelihood classification and output from one iteration of classification

using NDVI thresholds. Details about the ensemble classification method appear later in this section.

Given the heterogeneity of the landscape being studied, supervised classification was preferred because

knowledge about the area could be incorporated during training of the classifier. Specifically the maximum

likelihood classification method is chosen [12, 33]. Maximum likelihood classification starts with an initial set

of class means {µ1, µ2, . . . , µK} that are derived from a training set, allocating to each pixel p with feature

vector xp, the class of highest probability as follows:

P (Ci|xp) =
P (xp|Ci)∑K
j=1 P (xp|Cj)

(1)

where P (Ci|xp) is the a posteriori probability of class {i : i = 1, 2, . . . ,K} given the pixel feature vector

{xp : p = 1, 2, . . . , q} where q is the total number of pixels for the imaged area. Equation 1 results from

assuming equal a priori probabilities for all classes. The conditional probability that a pixel belongs to class

i is Gaussian with variance-covariance matrix Mi = (xp − µi)TV−1
i (xp − µi), expressed as

P (xp|Ci) =
1

(2π)D/2|Vi|1/2
exp

(
−Mi

2

)
(2)

where dimensionality parameter D represents the number of spectral bands. The D × D variance-covariance

matrix of class Ci is denoted by Vi. P (xp|Ci) need not be limited to the Gaussian density. [34] showed

that higher overall accuracy can be achieved by localized k -nearest neighbour estimation of the probability105

density P (xp|Ci).

In Figure 3, an ensemble classifier based on maximum likelihood (ML) classification and on thresholds of

the normalized difference vegetation index (NDVI) is presented. Ensemble classification entails aggregating110

results from multiple individual classification runs [14]. The differences between the individual outputs can

either be in terms of application of different classifiers or differences in input parameters for the same classifier.

The objective of ensemble classification is to improve the accuracy achievable through a single classification

effort. The basis for choosing the ensemble method in this study is the need for improved accuracy given the
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Figure 3: Ensemble maximum likelihood classification with focus on improved accuracy for the bare soil class

higher risk of inaccurate classification of bare soil in urban areas due to imagery of limited spectral resolution115

relative to the heterogeneity of the urban landscape. With reference to the workflow illustrated in Figure 3,

the ensemble classification method consists of the following:

1. Signature development – Seven circular air quality neighbourhoods or areas of interest (AOIs) were

selected from which three non-overlapping training regions were selected. In each training region 14

areas were selected representatively in terms of land cover classes and variations in soil types. From120

each training area, 20–30 pixels were selected resulting in a training sample size that was within the

recommended range for maximum likelihood classification [34]. The training samples were the basis for

signature development for the ML classifier and for determining NDVI thresholds for the bare ground,

water and vegetation classes. In this step two classes for vegetation (grass and shrubs, trees) and

four classes for bare soil corresponding to dominant colours ranging from reddish brown (plinthosols,125

leptosols and nitisols), black (vertisols), yellow to white (characteristic of acrisols and soils heavily

contaminated by chemicals (technosols)) are considered. For the built-up (BU) and water classes (W)

no sub-divisions were considered and these features were also represented in the training samples. For

the BU class, during training there was emphasis on including pixels for different colours and types of

roofs and pavements.130

2. Classification – Three iterations of ML classification were performed for each of the training sets,

resulting in the image being classified into four classes, namely V, W, BU and BS during each iteration.

A this stage reference is made to four classes rather than five because the “mixed with bare soil class”

is only derived in the aggregation stage of the ensemble of classification outputs. The last part of the

ensemble classifier uses NDVI thresholds for different natural land cover types. Reference values for135

water bodies, bare ground and vegetation are accepted as: < 0, 0 − 0.2, 0.2 − 0.9 respectively. The

applicability of these threshold ranges for our scenes was verified during training where the different

land cover types were known. [35] also recommended verification of thresholds using local scene NDVI
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values especially in regions dominated by grass, shrubs and variation in soil properties. Bare ground

includes bare soil and built up areas.140

3. Dichotomizing land cover classes – The final outputs from the ML and NDVI classifiers were reclassified

into binary rasters. Each of the three land cover classification outputs from the ML classifier were

dichotomized by assigning one to BS pixels and zero to W, V and BU cells. The NDVI classification

output was dichotomized by assigning one to bare ground pixels and zero to W and V cells. The

final BS class label was determined by aggregating the four binary rasters. For the other classes the145

aggregate score was assessed in combination with multi-class output discussed in the second step.

4. Bare soil total score raster – The four binary rasters were aggregated into a bare soil score raster

where each cell had a value that equals either 0, 1, 2, 3 or 4. A value of 4 meant that the class

assigned by the ML and NDVI classifiers was bare soil, whereas a value of zero indicated that none

of the classifiers identified that pixel as bare soil. Pixels with zero score were assigned W or V as150

final class labels depending on class majority from the four multi-class classification output layers. A

value of 3 indicates a strong likelihood (75% agreement) that the pixel can be assigned to the bare soil

class, whereas for pixels with a score of 2 there is 50% agreement with a bare soil class assignment.

Therefore, pixels with bare soil scores of 3 and 4 were classified as bare soil (BS). An aggregate score

of 1 emanating from the NDVI classification raster combined with a majority of BU class assignment155

from the three iterations of ML classification, resulted in BU being the final class labels for those pixels.

The remaining pixels with scores of 1 and 2, without BU class majority, were defined by areas where

soil was mixed with natural or synthetic features. The “mixed with bare soil” (m-BS) class label was

given to these pixels. Therefore, the ensemble classifier resulted in five land cover classes, namely V,

W, BS, BU and m-BS.160

3.2. Sampling for performance evaluation of the classification routine

Assessment of classification accuracy is based upon visual inspection of the true-colour composite pan-

sharpened 1.5 m resolution SPOT 6 image of the AOIs in conjunction with Google Earth imagery according

to a simple random sampling design [36]. An important consideration is the determination of sample size.

For a multinomial population [37], the marginal distribution for each class i = 1, 2, . . . ,m is binomial

with parameter pi. Sample size is n such that,

n = B × p(1− p)
e2

(3)

where B is the (α/k) × 100th percentile of the χ2
1 distribution for the proportion parameter. In our case

we have no prior knowledge of standard deviation of each class. Therefore, using p = 0.5, sample size per

AOI is equal to

n =
B

4e2
(4)
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Assuming the probability of Type I error is α = 0.05 and 80% precision (e = 0.2), results in a sample size of

384 pixels.

Our ensemble classification method as discussed in Section 3.1 focuses on obtaining the bare soil class165

as accurate as possible. Therefore, validation is performed twice. The binomial test for accuracy was chosen

for preliminary validation of how frequently bare soil was correctly classified at each of the seven AOIs during

the classifier development stage. Table 1 shows that validation pixels were proportionally allocated to each

AOI based on the unequal number of bare soil pixels results and sample size calculated in Equation 4. The

purpose of preliminary validation is to identify common instances of bare soil misclassification as a basis for170

improving our classifier through further training. Thereafter, all 23 AOIs are classified. The conditional or

intra-class Kappa assessment are chosen for final validation or testing at a randomly selected AOI where all

five land cover classes are evaluated [38].

Table 1: Description of the seven areas of interest (AOIs) with respect to pollution sources and sample size chosen for the

preliminary validation of the bare soil (BS) class

AOI Description of AOI BS pixel Prop (alloc.) BS validation

(Source, Region) count NBS(i)/NBS(all) sample size

Bodibeng Townships, unpaved roads, yards and sidewalks, 93 537 0.15 398

(Dom, Tshwane) bare fields East of station

Booysens Pretoria CBD south of station, 56 129 0.09 238

(Bg, Tshwane) mining, agric fields north of station

PTA West Pretoria CBD east of station, 34 466 0.05 147

(Ind, Tshwane) mining south of station

Diepkloof Mine tailing storage facilities N-NE of station, 130 050 0.20 553

(Traf, Vaal Triangle) township

Kliprivier Extensive agric fields, 204 724 0.32 872

(Ind, Vaal Triangle) low density residential, townships NE of station

Newtown JHB CBD, mining south of station, 73 534 0.12 313

(Traf, JHB) suburbs N of station

Tembisa Township, sport fields with bare areas, 42 188 0.07 180

(Dom, Ekurhuleni) unpaved sidewalks and roads

Total 634 628 1 2 701

175
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3.3. Assessing the variability of observed PM10 attributed to land cover

Natural and anthropogenic sources of fugitive dust emissions in urban areas are a challenge in terms of

separability [39, 40]. This is complicated by the reduction effect that vegetation and built structures have on

ambient dust particles. Wind activity is an important factor in the dust emission process, with the strength

of emissions being a function of wind speed and landscape characteristics including soil type, vegetation

and built surfaces. According to previous studies, wind speeds in excess of 6 m s−1 have been observed to

induce emission fluxes in desert and arable areas [40]. For the Witwatersrand area which is part of our study

area, [41] found that wind speeds during dust episodes were at least 4 m s−1. Therefore, this wind threshold

velocity is chosen for segmenting the PM10 data, focussing only on daily observations corresponding to wind

speeds in excess of 4 m s−1.

A varying intercept regression model is chosen to assess how much of the variability in average PM10 is

explained by land cover characteristics. All land cover classes and a proxy for wind-blown dust emissions are

considered as explanatory variables. The emission of dust is a non-continuous spatial process because of the

intermittency of dispersion mechanisms and the heterogeneity of land cover, especially in urban areas. Our

choice of model is motivated by the latter, the assumption being that neighbourhoods with similar land cover

characteristics tend to have similar ambient PM10 concentrations. The expression for a varying intercept

model by [19] is:

yi = αj[i] + βxi + εi (5)

The observed average PM10 at air quality station i for days when wind speeds were in excess of 4 m s−1 is

represented by yi. The number of distinct clusters (or groups) in terms of land cover is J . Given a baseline

cluster, the intercepts αj for j = 1, 2, . . . , J − 1 represent the changes in mean PM10 level in as a result of

land cover characteristics represented by each cluster in comparison to the characteristics of the baseline.180

The final term is assumed at this stage to be a zero-mean constant variance Gaussian error term.

Two proxy variables for particulate matter emissions adapted from previous studies are considered for the

slope term. The first is a proxy for wind-blown dust emitted from bare ground. It describes the horizontal

flux of dust and is expressed by [40] as:185

Edust(109 g m−2) =
{

land area,m2
}
× (6){

[spike emission rate, g m−2]+

[(duration of erosion event, h)× (emission factor, g m−2 h−1)]
}

It is applied specifically to areas covered by bare soil and mixed bare soil pixels. The values for spike emission

rate (0.318), duration of wind erosion event (being 10 times the number of days with wind speed in excess
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of 4 m s−1) and emission factor (1.73) are taken from [40] for unstable fine textured soils. The assumption

of unstable soils is based on the region being dominated by erosion-susceptible soils and the high prevalence

of anthropogenic disturbances as described in Section 2.1. Values by [40] correspond to wind threshold

velocities in the range 8.9− 11.1 m s−1, which are more than double our threshold of 4 m s−1.

The other proxy, which we refer to as the Janssen’s beta indicator, “is a single value indicator that cor-

relates local land use characteristics to the local air pollution levels” according to [32]. It is expressed as:

β = log

(
1 +

∑
i ai × nCL(i)∑
i nCL(i)

)
(7)

where nCL(i) is the number of pixels of class i in the neighbourhood and ai weights the importance of

land cover class i on ambient pollutant concentration levels. We use the optimized set of weights for PM10

published by [32]. Zero weights are applied to vegetation and water pixels because they correspond to semi-

natural areas and water bodies. We adapted the weighting coefficients for the built and bare soil classes in

this study because these are at a lower level of detail when compared to the CORINE land cover classes.

According to the nomenclature for the CORINE land cover data, the ‘continuous urban fabric’ is applicable

when artificially surfaced areas cover more than 80% of the surface [42]. None of our neighbourhoods have

that level of impervious surface coverage. Neighbourhoods with the highest built-up coverage expressed as

a percentage are Newton (64%), Pretoria West (65.1%) and Tembisa (66.3%). Therefore these neighbour-

hoods are considered to be continuous urban areas in this study. The others are considered to be areas with

discontinuous urban fabric. In all our neighbourhoods there is road infrastructure of significant width and

length as well as industries. Due to this heterogeneity, a geometrically averaged weight is used for built-up

pixels, averaging over the road (2.23), industrial (2.07) and discontinuous urban fabric (1.00) weights. The

three continuous urban fabric neighbourhoods are exempt from this tripartite weight. The ‘mine, dump and

construction sites’ (10.99) weight is applied to bare soil pixels, with the exception of two neighbourhoods

where geometrically averaging ‘agricultural areas and arable land’ (0.64) and mining weights seemed appro-

priate.

A k-means clustering procedure is used to identify homogeneous groups of land cover characteristics referred

to in our varying-intercept model. A starting point in a k-means cluster algorithm, is the specification of the

number of clusters k. The objective of the algorithm is to find k cluster centroids mj where j = 1, 2, . . . , k,

for a data set Xn×p in p-dimensional space thereby obtaining partition sets V = {V1, V2, . . . , Vk}. The

objective function that ensures minimum discrepancy between data points and the cluster centroid in each

partition is expressed as,

O =

k∑
i=1

∑
xj∈Vi

‖ xj −mi ‖2 (8)
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with our choice of distance function ‖ xj − mi ‖ being Euclidean. The k-means cluster algorithm is im-

plemented iteratively with the initial cluster centroids assigned randomly and convergence being reached

when all data points have been assigned and the within cluster distances are minimum. Multiple randomly

selected initial cluster centroids are considered to avoid convergence of the algorithm to a local minimum.

Further, the specification of the number of clusters k follows the use of an elbow criterion, a graphical tool

where the profile of the intra-cluster to inter-cluster variance ratio is assessed for ‘kinks’ or change points,

especially those below 50% as candidates for the number of clusters.

One of the challenges of k-means cluster analysis is the difficulty of interpreting clusters, therefore we use

a landscape diversity metric to interpret our clusters. The Shannon evenness index which is expressed in

Equation 9 describes the balance between land cover classes in each circular neighbourhood [43]. That is,

−
∑
i pi ln pi
lnN

(9)

where the maximum number of classes considered is N and the proportion of pixels assigned to class i is

pi. This index ranges from zero to one, where low values (< 0.5) indicate lack of variety or evenness in land

cover composition whereas high values (> 0.7) indicate evenness.

4. Results

4.1. Ensemble land cover classification results190

Figure 4 shows the bare soil output from the three ML iterations for the PTA West AOI. The white areas

are pixels attributed to the other classes, namely the built, water and vegetation classes. The yellow areas

correspond to an ensemble BS score of 3, showing pixels that are attributed to the bare soil class in all three

iterations of the ML classifier. Pixels with an ensemble score of 2 occur in close proximity to the yellow areas

on the map and these pixels are areas where bare soil is mixed man-made features in some cases and with195

degraded grass in others. Dark green pixels have a BS score of 1, being made of mostly areas of degraded

grass mixed with bare soil.

The results for interim accuracy assessment which are specific to the bare soil class are presented in Table 2200

and Figure 5. The overall preliminary accuracy for bare soil is 88%. For the seven AOIs, accuracy is lowest for

Newtown at 65% and highest for Kliprivier at 98%. In addition to assessing bare soil classification accuracy,

classification quality is also assessed based on an analysis of confidence. Classification confidence in Figure 5

is “a measure of confidence that quantifies how closely a classified observation matches the exemplars of the

training set” [44]. Fourteen classification confidence levels are defined relative to predefined discrete points205
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Figure 4: Map for bare soil derived by adding binary rasters obtained from each ML classification run (Pretoria West AOI)

on the cumulative distribution of the rejection fraction from 0.0 to 0.995. A confidence level of 1 corresponds

to a rejection fraction of 0 meaning that every cell can be correctly classified, whereas a confidence level of

14 is indicative of pixels that are furthest from the mean vector of the input signature and therefore 99.5%

(0.995 rejection fraction) of such pixels are at risk of misclassification. Apart from Diepkloof in Figure 5,

more than 70% of pixels attributed to bare soil in the other AOIs are likely to be misclassified. Classifier210

uncertainty is lower for Diepkloof relative to the other seven AOIs, with only 30–45% of pixels with level

14 and 17–23% of pixels with at least 0.5 probability that incorrect BS class assignment will be rejected

(confidence level ≤ 8).

215

Land cover classification maps in Figure 6 show high prevalence of the built class in Tembisa, PTA West and
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Table 2: Binomial assessment of accuracy for the bare

soil (BS) class

AOI
p̂a 90% Conf. int.b 90% Conf. int.b

lower bound upper bound

Bodibeng 0.95 0.93 0.97

Booysens 0.83 0.79 0.87

Diepkloof 0.84 0.81 0.87

Kliprivier 0.98 0.98 0.99

Newtown 0.65 0.61 0.70

PTA West 0.79 0.73 0.85

Tembisa 0.87 0.82 0.91

Overall 0.88 0.87 0.89

a Estimated probability of success, where success is de-

fined by the number of pixels from the validation sam-

ple that were correctly classified as bare soil

b Lower and upper bounds respectively for the 90% con-

fidence interval for p̂

Newtown. This is confirmed by coverage statistics in Table 3 which presents final classification results after

the classifier was improved by additional training on features where bare soil was prevalently misclassified.

The mixed bare soil class corresponds to large areas with degraded grass in Diepkloof and Booysens. From

Table 3 AOIs with the highest proportions of vegetation pixels are Kliprivier and Diepkloof. The least220

built-up AOI is Kliprivier. When the other 16 neighbourhoods were classified using the ensemble classifier,

there were areas that had higher density of buildings, the least (< 2 km2) bare soil coverage and very high

average PM10 concentrations corresponding to days with wind speeds in excess of 4 m s−1. Diepsloot noted

in Figure 7(a) was one of those neighbourhoods.

225

Etwatwa is randomly selected for the final classification accuracy assessment. The test sample consists of

384 randomly selected pixels. The percentage of pixels assigned to the water class is 0.03%, therefore only

four pixels are in the validation sample. From the intra-class kappa assessment results in Table 4, all four

pixels are incorrectly classified as water. They are bright rooftops of non-residential buildings. The overall230

accuracy is κ ≈ 0.78 with 12% standard deviation. Table 4 shows that the performance of the classifier is

superior for vegetation pixels. Reproducibility is also highest for this class. Apart from water, the built-up

class according to Table 4 is challenging for the classifier because of a higher risk of confusion with either
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Figure 5: Levels of confidence for the three ML classification iterations for seven AOIs used in training the classifier. Graphics

A-C show coverage (percentage of pixels) for each AOI corresponding to confidence levels 1-13 for each iteration; D. Shows the

percentage of pixels per AOI for which there is least confidence of correct classification for the three iterations.

bare soil or mixed bare soil classes.

235

4.2. Relating land cover with PM10 concentrations

Figure 7(a) is an explorative assessment of whether areal coverage of bare soil as a source of fugitive dust

emissions in a neighbourhood is correlated with average ‘windy day’ PM10 concentrations. The scatter-plot

reveals three broad groups and Diepsloot as an outlying observation. The first group includes the three AOIs240

namely Wattville, Etwatwa and Kliprivier, with the largest bare soil coverage, which appears to be positively

correlated with PM10. The other two groups identified from Figure 7(a) show that if bare soil coverage is

small (an area less than 10 km2), there seem to be a negative correlation with PM10. The two groups differ

in their intercepts. From Figure 7(b–c), vegetation and built-up coverage when considered individually are

not predictive of ambient PM10 concentrations.245
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Table 3: PM10 and wind summary statistics from air quality observations from the period March 2011 – February 2015

and land cover estimates from ensemble classification of SPOT 6 images of the seven circular areas

AOI Cluster
Land cover (in km2)a

PM10
b

Wind Wind Shannone Janssene Edust indexe

BU V BS mBS W spc dird index β index (109 g m−2)

Bodibeng 4 33.2 10.9 3.4 16.4 0.1 58 4.5 ESE 0.72 0.98 8.4

Booysens 4 28.3 13.6 2.0 20.1 0.0 35 6.1 NNW 0.72 0.84 10.9

Diepkloof 3 12.7 27.2 4.7 19.3 0.2 56 8.4 NNE 0.78 0.88 64.9

Kliprivier 3 2.6 42.1 7.4 11.9 0.2 55 8.1 NNW 0.61 0.41 35.6

Newtown 4 41.0 8.1 2.0 12.7 0.2 26 4.6 NNE 0.62 0.98 4.5

PTA West 4 41.7 7.0 1.2 14.0 0.1 49 4.7 ENE 0.58 0.94 14.8

Tembisa 4 42.5 3.7 1.5 16.3 0.0 84 4.7 WNW 0.55 0.98 14.8

a Land cover classes: BU– Built-up, V– Vegetation, BS– Bare Soil, m-BS– Bare soil mixed with man-made features or degraded

vegetation, W– Water

b The average PM10 concentrations in µg m−3 for days when wind speeds exceeded 4 m s−1

c Average wind speed exceeding 4 m s−1

d The most prevalent wind direction over all seasons

e Landscape metrics based on land cover: Shannon’s evenness index for diversity; Janssen’s β is an indicator of expected

pollutant response to land cover and use [32]; Edust is a proxy for wind blown dust emissions of PM10 based on bare soil

coverage

From Figure 7 the statistical relationship between observed average ‘windy day’ PM10 concentrations and

areal coverage of the different land cover types, especially bare soil, is not straight-forward linear. Close

examination of the scatter plots and further exploratory analysis revealed some grouping effects. Therefore,250

instead of directly relating PM10 with bare soil coverage in circular areas around air quality stations, cluster

analysis was performed to formally identify homogenous groups of air quality stations based on the mul-

tivariate space consisting of wind-related average PM10 and different areal coverage combinations for bare

soil, mixed bare soil, built-up, vegetation and water classes. Land cover composition clusters can therefore

be related to average ‘windy day’ PM10 concentrations. Figure 8(a) shows changes in intra-cluster variance255

as a result of changes in cluster size, which is the basis of the elbow criterion for selecting a plausible number

of clusters (k) for the k-means cluster algorithm. Cluster sizes four and six are identified from Figure 8(a)

as change points in the intra-cluster variation curve. A six cluster solution is chosen because it corresponds

to a lower intra-cluster variance and better separation of the groups with respect to land cover composition

and PM10 levels is observed (Figure 8(d)).260

We observe two main outlier clusters in Figure 8(b), namely Cluster 2 and 6, with the latter represent-

17



Table 4: Evaluating the performance of the ensemble land cover classifier through an assessment of the intra-class Kappa

coefficient

Class

User’s accuracy Producer’s reliability

Näıve
κi+ σ(κi+) CV(κi+)

Näıve
κ+j σ(κ+j) CV(κ+j)

agreement reliability

W 0 0 0 - 0 0 0 -

V 0.99 0.98 0.02 2% 0.97 0.96 0.02 2%

BU 0.71 0.62 0.05 9% 0.79 0.71 0.05 8%

BS 0.76 0.70 0.05 8% 0.89 0.86 0.05 5%

m-BS 0.90 0.88 0.06 6% 0.57 0.52 0.06 12%

ing high ambient PM10 levels (more than two standard deviations from the mean) for a neighbourhood with

the smallest built-up footprint and the largest coverage of open fields with vegetation and degraded grass

mixed with bare soil. Clusters 1, 5 and 6 have higher PM10 concentrations than the average of 67 µg m−3,265

whereas the other three clusters have PM10 concentrations that are lower. Cluster 5 consist of Wattville

and Etwatwa which have the largest bare soil coverage and PM10 values that exceed the cluster average.

With the exception of Cluster 4, neighbourhoods with lower than average PM10 values are characterized

by higher than average vegetation cover and water bodies. Clusters 1 and 4 are the only clusters consist-

ing of neighbourhoods with higher than average proportion of built-up area, however they have conflicting270

PM10 responses (Figures 8(b) and 8(d)). The Shannon evenness indicator describes the diversity of land

cover types within each circular neighbourhood and Figure 8(c) illustrates how this varies between the six

clusters of neighbourhoods. Land cover composition is more evenly distributed across the five classes for

neighbourhoods in Cluster 1, 2, 3 and 5. The latter cluster consists of two neighbourhoods with the biggest

areal coverage of bare soil compared to neighbourhoods in other clusters. Neighbourhoods in Clusters 4275

and 6 exhibit lower levels of evenness due to dominance of the built-up class in Cluster 4 and vegetation in

Cluster 6 (Figure 8(c), Table 3). Variation in land cover composition is the highest amongst neighbourhoods

in Cluster 4 which matches with the high variation in average PM10 for this cluster (Figure 8(b)).

280

Land cover characteristics as represented by the six clusters significantly (p-value < 1e − 3) explain more

than 70% of the variability in average PM10 concentrations associated with wind speeds in excess of 4 m s−1

(Table 5). Further, at 10% level of significance, all six clusters are significant predictors of observed PM10

levels. From pairwise analysis of variance comparisons, we found Cluster 6 to be significantly different from

all other clusters and Cluster 1 to be significantly different from Clusters 3 and 4. Our proxy for wind-blown285

dust emissions Edust in Table 5 is not statistically significant as a predictor for observed wind-related average

PM10. A model with the adapted Janssen’s β-indicator as the slope term was also considered. The results

indicated that it is also not a statistically significant predictor of observed wind-related average PM10. From
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Table 5: Varying intercept model results relating land

cover patterns to ambient PM10

Coefficients Estimate Std. Error Pr(> |t|)

Intercept 97.78 8.27 < 1e− 3

Cluster 2 -36.03 18.74 0.074

Cluster 3 -47.60 10.00 < 1e− 3

Cluster 4 -48.32 11.00 < 1e− 3

Cluster 5 -35.68 17.99 0.066

Cluster 6 59.12 18.36 < 1e− 2

Edust 0.09 0.14 0.525

p-value: < 1e− 3; R2: 0.79 and adjusted R2: 0.71

Figure 9(b), high ambient PM10 levels are expected for neighbourhoods in Clusters 4 and 5, whereas lower

concentrations are expected for Cluster 6. This is in contrast to observations where the highest PM10 value290

corresponds to Cluster 6 and the median value for Cluster 4 is the lowest in Figure 8(b). Similarly the low

levels of PM10 emission from bare soil indicated by Edust for Clusters 1 and 6 in Figure 9(a) are in contrast

to the high observed PM10 values for these clusters in Figure 8(b).
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Figure 7: Exploratory assessment of the statistical relationship between vegetation, built-up and bare soil coverage and ambient

PM10
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(a) Elbow criterion for determining the number of clusters
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(b) The distribution of mean PM10 for the six land

cover clusters
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(c) The distribution of the Shannon evenness index for

the six land cover clusters

(d) Deviation of land cover coverage and mean PM10 from the cluster mean

Figure 8: A graphic summary of the characteristics of the six land cover clusters
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(a) Illustrating how the proxy for PM10 emissions from bare

soil is distributed across the six land cover clusters
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(b) The adapted Janssen’s β-indicator, illustrating expected

pollutant levels associated with land cover characteristics of

the six clusters

Figure 9: Proxy variables considered as fixed effects in the varying intercepts model that relates land cover characteristics to

observed PM10 values
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5. Discussion295

(a) Man-made objects (waste) identified on top of the MRD

and assigned to the built-up class

(b) Leachate identified as a synthetic feature and classified

as built-up

(c) Dry soiled areas in a waste treatment plant classified as

bare soil and the rest as built-up

Figure 10: Unique features within Newtown AOI for which the ensemble classifier successfully identified bare soil from synthetic

materials (Source: Google Earth imagery, 28 April 2013)

PM10 is an erratic pollutant influenced by numerous local sources of emissions, hence finding covariates that

capture local variation of concentration is an important step for statistical mapping of PM10 [32]. Spatially

extensive covariates, like those derived from land cover and use, are valuable for this, especially in regions

where the air quality network is minimal and the data cannot realistically support region-wide regulatory

decisions. However, usefulness of a spatially extensive predictor depends on the strength of its correlation300

with the target variable. Our interest was on land cover data with one caveat being the lack of high spatial

resolution data for our study period when the research was undertaken. We therefore considered land cover

classification using available SPOT 6 images taken during our study period as a starting point towards our

objective of assessing the proportion of variability of PM10 concentrations attributable to land cover char-

acteristics. We considered the classification of four major land cover classes, namely bare soil, vegetation,305

built up and water bodies. However, separability from a satellite image with limited spectral resolution is a

challenge in complex landscapes like in urban areas if land cover consists of bare soil, rocks, degraded grass

and soil aggregates which contain synthetic materials [11]. To overcome this, we focussed on developing an
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ensemble classifier, by training iteratively over areas of bare soil from locations which differed in soil types.

The particular focus of our classifier on bare soil aligned with our interest on dust emission reservoirs because310

of the mining heritage of our study region.

The ensemble classifier is able to discriminate some synthetic materials from bare soil, such as waste and

leachate on mine residue deposits (Figure 10(a)) and bare soil areas in a waste treatment plant (Figure 10(c)).

However, mixtures of vegetation and chemically treated soils that contain synthetic materials used to cover315

the three mine residue deposits are a source of confusion. This is partly attributable to erosion of vegetation

cover due to the time that has lapsed since last rehabilitation and deposition of fine dust from reprocessing

of nearby smaller MRDs for residual gold [8]. Human-induced degradation is another source of confusion

here, given that during the period from 1952 until 2011 more than 700% growth in housing has been realised

within 3 km of the three MRDs [8]. Built-up areas tend to be misclassified as bare soil, especially clay-tile,320

thatched and canvas rooftops in areas with unpaved roads. Therefore, as shown in Table 4, the performance

of the classifier is lower for the bare soil and built-up classes. Higher accuracy is achieved for neighbour-

hoods with lower building density and low landscape heterogeneity, while in high intensity built-up areas

and heterogeneous landscapes like Newtown, classification accuracy is lower. Further work will investigate

using additional information in the form of height and texture to improve discrimination between bare soil325

and built-up pixels. The misclassification of bright (white on the image) rooftops as water is a concern with

no further action taken in this study because the proportion of land covered by water bodies is less than 0.1.

In future work this will be considered during the training stage.

With respect to describing local variation in PM10, monitoring stations were grouped into six clusters re-330

vealing a statistically significant relationship between land cover patterns and average PM10 concentrations

observed when daily average wind speeds exceeded a threshold of 4 m s−1 which correlates with known

dust episodes within the study area [41]. An interesting result was that Clusters 1, 5 and 6 consisting of

monitoring stations with either larger built-up or bare soil areas, had PM10 concentrations higher than the

average of 67 µg m−3. Differences in the nature of the built-up areas and bare ground in neighbourhoods335

represented Cluster 1 and 4 could be contributing to the conflicting land cover and PM10 patterns. Neigh-

bourhoods in Cluster 1 include dense informal settlements with unpaved roads, pavements and yards which

are more prone to wind-blown dust. Neighbourhoods in Cluster 4 are also densely built-up, however these are

mostly high-rise buildings and there is no settlement informality. High-rise buildings are suspected to have

a shielding effect on particles emitted from dust reservoirs found on the periphery of these neighbourhoods.340

This could be contributing to the lower PM10 values in comparison to the average of 67 µg m−3.
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Based on Shannon index, we observed that the clusters varied in respect of land cover composition, with

most clusters being evenly distributed rather than having land cover classes that prevalently dominate. We

observed that more diverse air quality neighbourhoods had higher concentrations of ambient PM10 concen-345

trations. The fugitive dust emissions proxy was not a statistically significant predictor of average PM10

values associated with strong winds. However, this does not imply that wind-blown dust emissions do not

have an effect on ambient PM10 concentrations [40, 10, 41]. Lack of significance for Edust can be attributed

to additional assumptions considered in calculating our proxy values due to data limitations which would

have widened the 20-50% variability in dust horizontal emission (Edust) attributable to uncertainty [40]. [32]350

captured local variation in PM10 through a land cover and use indicator which was optimized for Europe

using the CORINE land cover data. Adapting this indicator for our study area did not work because the

indicator was found to be insignificant as a predictor of observed wind-related average PM10. In the absence

of emission inventories on which indicators that link local land cover and use patterns to local air pollution

levels can be optimized, our method of identifying homogenous land cover groups based on their statistical355

relation to observed PM10 would enable improved prediction of PM10 where there are no air quality stations.

In our previous work, the South African census 2011 small area layers on percentage housing informal-

ity and domestic energy fuel usage were explored as potential spatially extensive covariates for mapping the

annual exceedance frequency of the PM10 national air quality standard (NAQS) [45]. Three geostatistical360

models were compared, namely kriging with external drift, a Log-Gaussian and a Poisson generalized linear

geostatistical model. Housing informality was found to be a statistically significant predictor, accounting

for approximately 20% of the variability of the PM10 NAQS annual exceedance rate. The PM10 response

variable of interest in this study is arguably different from the previous study, however both responses are

obtained from the same daily PM10 observations which are realizations of the same underlying unknown365

complex process. Therefore, for future work, it is plausible that including proportion housing informality as

a predictor could account for a portion of the remaining 30% variation in average PM10 values associated

with strong winds that could not be attributable to land cover characteristics in this study. Another por-

tion of the remaining variability may be attributable to spatial correlation from the underlying particulate

matter emission processes. Therefore, the varying intercept model will be extended into a spatially varying370

intercept geostatistical model [46]. This will enable quantification of the remaining variability that is due to

the spatial covariance of PM10 values and mapping of key PM10 statistics.

6. Conclusions

This study showed that land cover patterns in the neighbourhood of an air quality station are significant pre-

dictors of average PM10 concentrations, in particular on days when wind speeds have locally been observed to375
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cause significant dust emission episodes. This justifies the use of a land cover data set in mapping air quality,

especially given a spatially sparse air quality monitoring network and lack of a regional emissions inventory.

An ensemble maximum likelihood pixel-based land cover classifier enabled inclusion of information on known

sources of variability that contribute to difficulties in classifying bare soil through iterative training. For

urban areas, this learning can be extended to the built-up class which is also susceptible to misclassification380

and for which improved accuracy is important for the use of land cover as a covariate in mapping air quality.

A k-means cluster analysis is effective in separating air quality stations into homogenous groups with respect

to land cover characteristics in the vicinity of the air quality station that can be related to observed PM10

concentration.
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