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Abstract  19 

Surface ocean wind datasets are required to be of high spatial and temporal resolution and 20 

high precision to accurately force or be assimilated into coupled atmosphere-ocean numerical 21 

models and understand ocean-atmospheric processes. In situ observed sea surface winds from the 22 

Southern Ocean are scarce and consequently the validity of simulation models is often 23 

questionable. Multiple wind data products were compared to the first known high resolution in 24 

situ measurements of wind speed from Wave Glider (WG) deployments in the Southern Ocean 25 

with the intent to determine which blended satellite or reanalysis product best represents the 26 

magnitude and variability of the observed wind field. Results show that the ECMWF reanalysis 27 

product is the most accurate in representing the temporal variability of winds, exhibiting 28 

consistently higher correlation coefficients with in situ data across all wind speed categories. 29 

However, the NCEP-DOE AMIP Reanalysis-2 product matches in situ trends of deviation from 30 

the mean and performs best in depicting the mean wind state, especially during high wind states. 31 

The ECMWF product also leads to smaller differences in wind speeds from the in situ data, 32 

while CFSv2 showed slightly higher biases and a greater RMSE. The SW product consistently 33 

performed poorly at representing the mean or wind stress variability compared to those observed 34 

by the WG. Overall, the study shows autonomous surface vehicles provide valuable observations 35 

by which to validate, understand and potentially assist in correcting satellite/reanalysis products, 36 

particularly in remote regions, where few in situ estimates exist. 37 

  38 
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1. Introduction 39 

Mid- to high-latitude regions in the Southern Ocean are host to the strongest wind fields 40 

at the ocean surface. These strong winds (e.g. speeds >20 m s-1; Yuan (2004)) significantly 41 

impact upper ocean properties and processes, such as mixed layer dynamics, Ekman processes 42 

and air-sea exchange. Exchanges in heat, moisture, and momentum at the air-sea interface are 43 

facilitated by sea surface winds. In addition to driving physical processes at the sea surface, these 44 

winds also have implications for biological processes which extend below the surface. The flux 45 

of carbon dioxide (CO2) between the atmosphere and ocean is closely related to wind speed 46 

(Wanninkhof, 1992, 1999, 2009, Nightingale, 2000, Ho et al., 2006), and as such, sea surface 47 

winds are of interest to many scientists studying and modeling biogeochemical cycles within the 48 

ocean.  49 

Surface ocean winds are measured using in situ techniques or remote sensing 50 

instruments. Satellite instruments interpret variability in lidar laser energy reflection due to sea 51 

surface roughness  to infer wind vectors generally at a height of 10 meters above sea level, while 52 

in situ measurements are generally taken at varying heights above sea level dependent on the 53 

platform (e.g. ship, mooring, or glider). Due to the varying methods of collecting and 54 

synthesizing wind measurements, the uniformity of sea surface wind data is often questioned. 55 

Such inconsistencies require studies reliant on satellite derived wind data (such as Yuan et al., 56 

2009) to perform a validation prior to the start of their analysis in order to determine the ability 57 

of satellite blended datasets to accurately represent wind fields at the air-sea interface, and to see 58 

if post processing is required to reduce errors once compared to in situ measurements. There is a 59 

great need to reduce or eliminate this time costly step in wind data analysis. Further, the dearth 60 

of in situ wind stress observations in the Southern Ocean, particularly in winter (practically 61 
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absent – Gille et al., 2016), is resulting in poorly constrained ocean and climate models, where 62 

wind forcing is reliant on un-validated scatterometer or reanalysis wind products. This particular 63 

problem, together with air-sea flux uncertainties in general, were highlighted at a recent 64 

international workshop that brought together scientists to discuss this issue and how it could be 65 

addressed (Gille et al., 2016). Through the Southern Ocean Observing System (SOOS) a new 66 

capability working group has been formed on enhancing parameterizations of air-sea fluxes in 67 

the Southern Ocean. It is hoped this will attempt to address, discuss and engage with the larger 68 

community on the severe lack of flux observations and the associated research issues emanating 69 

from this (http://soos.aq/activities/capability-wgs/soflux).  70 

Several studies have made attempts to compare and validate wind products in the 71 

Southern Ocean. Yuan (2004), Yuan et al. (2009), and Patoux (2009) highlight the implications 72 

of misrepresented wind fields in the Southern Ocean in their evaluations of extreme wind events 73 

in the Southern Ocean. Yuan (2004) compared Quick Scatterometer (QuikSCAT) wind data with 74 

reanalysis wind data from the National Centers for Environmental Prediction (NCEP), National 75 

Center for Atmospheric Research (NCAR) and European Centre for Medium-Range Weather 76 

Forecasts (ECMWF). This study showed that both weather station and QuikSCAT winds were 77 

stronger than reanalysis data, albeit only during high wind events. Their approach required the 78 

input of many different wind products to investigate the spatial and seasonal variability of high 79 

wind characteristics. Due to the remote area of the study, the reanalysis products that they used 80 

were limited with regard to in-situ data input. It was shown that monthly mean wind observations 81 

from satellite averages over the Southern Ocean were in agreement with model simulations 82 

except for the period from May to October (6 months centered over austral winter), when 83 

scatterometer winds were stronger than simulated winds, thereby suggesting a strong winter bias 84 
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in data. Similar to Hilburn et al. (2003), Yuan (2004) attributed this discrepancy to the 85 

NCEP/NCAR reanalysis missing some storms entirely, along with a lack of observational data 86 

assimilated into the reanalyses. Additionally, Yuan et al. (2009) further investigated a study by 87 

Patoux et al. (2009), where scatterometer derived pressure fields were modified using reanalysis 88 

wind data. QuikSCAT data were blended with ECMWF forecast data to produce modified 89 

pressure swaths. Yuan et al. (2009) claim that even small mesoscale cyclones contribute 90 

significantly to heat and momentum fluxes at the air-sea interface due to the high frequency of 91 

their occurrence. As such, a correct representation of mesoscale cyclones in numerical weather 92 

prediction (NWP) models of the Southern Ocean is therefore critical (Yuan et al. 2009). 93 

Although these studies have aided in improving estimates of wind stress and understanding time 94 

and space variability of Southern Ocean wind events, significant gaps in our understanding of 95 

wind stress accuracy and uncertainty remain. For instance, at any given location the diurnal 96 

variability of wind stress is often subject to aliasing due to the geographical variability of 97 

sampling by satellite, and the higher harmonics of the fundamental diurnal cycle may be 98 

distorted or eliminated (Risien and Chelton, 2008). New acquisitions of in situ data from robotic 99 

platform deployments, such as presented in this study, are likely to play an ever increasing role 100 

in understanding wind stress (and other air-sea fluxes) characteristics and validating gridded 101 

wind stress products, especially in remote and harsh locations of the worlds ocean where 102 

historically field data has a strong bias to the summer season (Gille et al., 2016). 103 

The aim of this paper is to determine which wind data product (satellite blended, 104 

reanalysis and modelled) best represents the in situ wind field magnitude and variability of a 105 

study location in the Subantarctic Southern Ocean. This is done by comparing wind products 106 

with a valuable set of time series of in situ sea surface wind data collected by Wave Glider (WG) 107 
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technology deployed in a series of experiments in the Southern Ocean. The paper is organized as 108 

follows: an explanation of the surface wind datasets, their sources, and the transformations 109 

performed to collocate them in space and time. In the following section, a detailed description of 110 

the statistical analysis performed in this study is provided, while in Section 3, remotely measured 111 

winds are compared with in-situ winds at a quasi-fixed location in the Southern Ocean. The final 112 

section presents a discussion of the results and their broader implications for other scientific 113 

disciplines. 114 

 115 

2. Data and methodology 116 

  2.1 In situ wind observations and experimental setup 117 

 The in-situ data used in this study were collected via a Liquid Robotics Wave Glider 118 

(WG) autonomous surface vehicle. The primary components of the WG include a surface float, a 119 

subsurface unit, and a 7-meter-long umbilical cable, which connects the two (Figure 1). The fins 120 

installed on the subsurface unit convert orbital motion of surface waves into horizontal force that 121 

drives the subsurface unit forward. The subsurface unit tows the surface float at speeds ranging 122 

between 0.5-2 knots. Solar panels and batteries power sensors and communication systems that 123 

are installed in the surface float, enabling it to remain at sea for an extended period of time 124 

(multiple months). The experiment was located in the domain of austral summer maximum wind 125 

speed (December 2015 average > 10 m s-1), associated with the westerly winds of the Southern 126 

Ocean, as indicated by the red shading band in Figure 1(a). Two different Wave Glider 127 

deployments took place in the austral winter to summer of 2015. Gliders ‘CSIR2’ and ‘CSIR1’ 128 

were deployed in July and November of 2015, respectively, and were set to navigate to 43°S, 129 
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8.5°E. Upon arrival at the study site a pseudo-mooring octagon sampling pattern (Figure 2) with 130 

a diameter of 16 km was maintained (further details in Monteiro et al., 2015). At the center of the 131 

octagon, a Seaglider profiled the upper 1km of the ocean in pseudo-mooring mode. 132 

The WG is designed to augment existing marine technology by providing autonomous 133 

real-time data collection of parameters near the air-sea interface. The Council for Scientific and 134 

Industrial Research (CSIR) uses this technology in their integrated multi-platform approach for a 135 

series of the Southern Ocean Seasonal Cycle Experiments (SOSCEx), which use research 136 

vessels, WGs, profiling gliders, bio-optic floats, satellite data and numerical models to explore 137 

the climate sensitivity of carbon and ecosystem dynamics (Swart et al., 2012). The WGs 138 

deployed during the research expeditions were equipped with an Airmar WX-200 Ultrasonic 139 

Weatherstation Instrument (more at www.airmar.com/uploads/brochures/WX-OFFSHORE.pdf). This 140 

instrument is a compact weather station designed for moving platforms, with abilities to 141 

dynamically correct winds using an internal compass and correct up to 30° pitch in rough seas. 142 

The sensor outputs apparent and true wind speed and direction (via ultrasonic transducers that 143 

are able to measure wind speed readings up to 40 m s-1), barometric pressure, air temperature, 144 

and GPS location. The meteorological sensor was mounted on a mast attached to the surface 145 

float of the WG at 0.70 m above sea level. The sensor sampled at 1 Hz and then averaged over 146 

10 minute bins before transmitting data back to shore via Iridium satellite communications. 147 

As stated by the manufacturer, the sensor has the following wind speed measurement 148 

accuracies depending on wind speed categories: 0-5 m s-1: 0.5 m s-1 RMS; 5-40 m s-1: 1 m s-1 149 

RMS. In wet conditions, which include rain, frost, snow or severe sea spray, errors may increase 150 

to 2.5 m s-1 due to moisture flow through the wind channel. This is expected to have a reduced 151 
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impact on the data accuracy due to the bin averaging in the field as well as in relating the in situ 152 

wind speed with longer term 6 hourly satellite or reanalysis wind products. 153 

 154 

2.2 Satellite/reanalysis wind data 155 

 The SeaWind (SW) globally gridded and blended sea surface vector winds were 156 

generated from the multiple satellite observations of DOD, NOAA and NASA along with the 157 

input of satellite wind retrievals from Remote Sensing Systems, Inc. More information about the 158 

satellites, instruments, and blending scheme can be found at https://www.ncdc.noaa.gov/data-159 

access/marineocean-data/blended-global/blended-sea-winds. The methods used to generate such 160 

data include objective analysis and simple spatiotemporally weighted interpolation. This product 161 

provides global ocean coverage with a spatial resolution of 0.25° x 0.25° and a 6 hourly temporal 162 

resolution. The data are provided at 10m above sea level.      163 

 NOAA uses a global NWP model called the Climate Forecast System which represents 164 

the interaction between the air-sea interfaces throughout the world’s oceans. The CFS version II 165 

(CFSv2) operational near real time wind vector dataset provides time series at a period of record 166 

from 01 January 2011 – 01 April 2016 at a 6 hourly temporal resolution (Saha et al., 2014). CFS 167 

time series products are available at a spatial resolution of 0.205° x 0.204° at 10m above sea 168 

level.  169 

 European Centre for Medium-range Weather Forecasts (ECMWF) ERA-Interim Global 170 

Reanalysis Sea Surface Winds are provided at a spatial resolution of 0.125° x 0.125° (Dee et al., 171 

2011). The project is in near real-time production and the data are calculated at 10m above sea 172 

level and are available at a 6 hourly temporal resolution. 173 
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Lastly, the NCEP/NCAR Reanalysis project has created a sea surface wind dataset which 174 

covers the period from 01 January 1979 to the present. Due to increasing user processing errors 175 

and systematic biases in NCEPI, the development of the NCEP–DOE AMIP-II Reanalysis (R-2), 176 

or NCEPII, was initiated in the late 1990’s (Kanamitsu et al., 2002).  NCEPII is of the same 177 

spatial (1.9047° x 1.8750°) and temporal resolution as NCEPI and incorporates similar raw 178 

observational data. The data are calculated at a height of 10m above sea level and are available at 179 

a 6 hourly temporal resolution.  180 

 181 

2.3 Data comparison approaches 182 

 Satellite winds are derived from sea surface backscatter observed by microwave sensors 183 

in orbit to generate wind in an equivalent neutrally stable state. This estimation is based on the 184 

variation of normalized radar cross section as a function of local wind conditions and observation 185 

geometry (Freilich and Vanhoff, 2002). When a lidar laser beam hits a calm water surface at near 186 

normal incidence roughly 2% of the energy is reflected with little divergence; however, with 187 

increasing wind speed and subsequent surface roughening the divergence angle of the reflected 188 

energy increases and the intensity of lidar backscatter decreases (Yongxiang Hu, 2009). This 189 

process makes them sensitive to ocean surface roughness due to the stratification of the 190 

atmosphere above sea level. These sensors are thus calibrated to an equivalent neutral wind at a 191 

reference height of 10m above the sea surface (Liu and Tang, 1996; Bourassa et al. 1999a; 192 

Bourassa et al. 2003; Chelton et al. 2004). These equivalent neutral winds are the winds that 193 

would exist if the atmospheric boundary layer was neutrally stratified (Chelton et al. 2004; 194 

Carvalho et al. 2013). An observation operator (Tardif and Laroche, 2012B) is typically applied 195 

to vertically interpolate wind information through the surface layer to the specified 10m height 196 
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using the logarithmic wind profile and Monin- Obukov similarity functions (as described by 197 

Geleyn, 1988). Consequently, to compare real-time stability dependent winds to equivalent 198 

neutral winds, a transformation must be performed to shift the WG winds to the same reference 199 

level as satellite winds. Any extrapolation method to shift measured wind speed to a different 200 

height is a function of atmospheric turbulence. Wind shear and the buoyant forcing of the 201 

atmosphere must be taken into account; ultimately the vertical density stratification of the 202 

atmosphere must be accurately represented (Ruti et al., 2008).  203 

Various methods have been used depending on the amount of input data available. One 204 

commonly used method, proposed by Liu and Tang (1996) is based on the bulk aerodynamic 205 

relation. This approach requires additional observational inputs of air and sea surface 206 

temperature (SST), relative humidity, and atmospheric pressure which are not available for this 207 

study period and site. As in Satheesan et al. (2007), Singh et al. (2013), Sudha and Rao (2013), 208 

and Yang et al. (2014), the present study required a method which does not include inputs 209 

associated with atmospheric stability. Bentamy et al. (2008) and Qing and Chen (2015) use the 210 

wind profile power law in their validation tasks of OSCAT and ASCAT wind data in the Atlantic 211 

Ocean. With this method, neutrally equivalent winds are calculated with the use of the 212 

coefficient (α) which varies with atmospheric stability. However, no intercomparison has been 213 

performed to determine the difference between a power expression method and the method 214 

proposed by Liu and Tang (1996). Therefore, the present study uses a mixing-length approach 215 

used by Herrera et al. (2005), Ruti et al. (2008), Carvalho et al. (2013), Singh et al. (2013), 216 

Alvarez et al. (2014) and Yang et al. (2014) in the vertical transformation of in situ surface wind 217 

data to a reference height of 10 meters. With no atmospheric stability input, a logarithmic 218 

method proposed by Peixoto and Oort (1992) is used. This is expressed as 219 
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                      𝑈𝑍 =  𝑈𝑍𝑚
 

ln
𝑍

𝑍0

ln
𝑍𝑚
𝑍0

  ,      (1) 220 

where Uz is wind speed at height Z, Zm denotes measurement height, and Z0 represents the 221 

roughness length. A typical oceanic value of 1.52 x 10-4 m was assumed for Z0 (Peixoto and 222 

Oort, 1992). This approach generates a logarithmically varying vertical wind profile while 223 

assuming neutral stability conditions. An inter-comparison of the correction methods proposed 224 

by Liu and Tang (1996) and by Peixoto and Oort (1992) was performed by Mears et al. (2001). 225 

They conducted a comprehensive analysis to determine if these laws can account for effects due 226 

to differences in atmospheric stability. It was concluded that the Liu and Tang (1996) correction 227 

is typically on average 0.12 m s-1 stronger than a logarithmic correction (Mears et al., 2001; 228 

Pickett et al., 2003; Ruti et al., 2008). Under stable conditions, Liu and Tang (1996) corrected 229 

winds are greater than logarithmic corrected winds, and for unstable conditions the opposite is 230 

seen (Carvalho et al., 2013). Ruti et al. (2008) also compared these correction methods and 231 

concluded that generally a difference in collocated wind speed is only observed during extreme 232 

wind events, where wind speeds exceed 15 m s-1. Singh et al. (2013) conclude that during these 233 

extreme wind events, wind speed transformation carried out by a logarithmic profile may lead to 234 

errors of 1–1.5 m s-1. However, it can be assumed that the use of a logarithmic extrapolation 235 

method will not cause discernable error as there are very few instances in the WG data where the 236 

wind speed is greater than 15 m s-1.   237 

 An instantaneous sampling approach may be appropriate in cases where the in-situ time 238 

series matches exactly with the satellite time series. On the other hand, according to Ruti et al. 239 

(2008) an averaging method may require consideration of the phase velocities of cyclones in the 240 

region of interest. By determining the typical phase velocity for Mediterranean cyclones, they 241 
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could determine a general time frame of 30-60 minutes over which in-situ data from the 242 

Mediterranean should be averaged when compared with scatterometer winds.  Other studies, 243 

such as one by Bourassa et al. (2003), state that the optimal averaging period varies with respect 244 

to wind speed at the moment of observation. During high wind periods, a shorter averaging 245 

period may result in a smaller RMSE, whereas during low wind speed periods, longer averaging 246 

periods could also have the same effect . This variability in optimum averaging time with respect 247 

to wind speed is anticipated from Taylor’s hypothesis (Taylor, 1938). This study took an 248 

averaged sampling approach to binning the time series. Data was transmitted back to the base 249 

station in 10 minute averages. Each time series consisted of more than ten thousand wind 250 

measurements. For analysis the data was binned twice, first to create an hourly product and then 251 

a 6 hourly product. Instead of sampling over the duration of each hour, two data points before 252 

and after each desired interval were averaged. 253 

 In order to compare blended wind fields from satellite data with the WG observations, a 254 

collocation procedure was necessary to match the datasets spatially and temporally. For all wind 255 

products, a linear interpolation procedure was performed to produce wind pairs from both 256 

datasets. This method was possible due to the aforementioned temporal gridding of the WG data. 257 

Because the WGs were set to circle a fixed point, the majority of the collocations were 258 

performed on a coordinate points close to 43°00’S 8°30'E (Figure 2). 259 

   2.4 Statistical comparison 260 

WG meteorological records are provided every 10 minutes, while the satellite products 261 

and numerical weather products provide four data points per day (corresponding to the hours 262 

00H00, 06H00, 12H00, and 18H00 UTC). Initial statistical analysis is intended to assess the 263 

quality of the simultaneous records with respect to temporal and spatial accuracy. In order to 264 
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determine if the error associated with the satellite and reanalysis derived wind data is related to a 265 

particular wind speed, the wind data were analysed as a whole as well as in low, medium, and 266 

high wind speed categories. The thresholds for these wind speed categories were determined by 267 

the lower and upper quartiles of the WG dataset. This varied slightly for each time series; the 268 

winter-spring deployment of the CSIR2 WG in 2015 had a low speed threshold of 7.3 m s-1, and 269 

a high speed threshold of 12.4 m s-1, while during austral summer CSIR1 WG had a low speed 270 

threshold of 9.0 m s-1, and a high speed threshold of 16 m s-1. The purpose of this approach was 271 

to show the error dependence on wind speed as well as to determine which product best 272 

represented each wind category.  273 

 The mean and the standard deviation of all wind products per wind speed category are 274 

calculated with the intent to show the standard variance from the mean. Statistical parameters 275 

such as the Root Mean Square Error (RMSE)and correlation coefficient (R2) are calculated to 276 

assess the ability of the wind products to represent the observed winds. Ui and Uj are variables 277 

which represent the satellite product wind speed and the observed wind speed by the WG, 278 

respectively. N is the total number of paired simulation/ observed records.  More specifically, 279 

these parameters will determine the accuracy of the varying wind product’s ability to represent 280 

the temporal variability of the wind. Bias is calculated to evaluate the tendency of the data and is 281 

intended to estimate differences in the mean state of the wind field. The intent of observing this 282 

parameter is to determine if wind products tend to over/underestimate the WG measured wind 283 

speed. 284 

Lastly, Weibull Probability Density Functions (PDF’s) were used to evaluate the various 285 

wind products ability to describe the WG measured wind regime. This method was similarly 286 

used by Liu et al. (2008) and Carvalho et al. (2013) in their assessment of QuikSCAT and Cross-287 
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Calibrated Multi-Platform (CCMP) surface winds ability to characterize buoy measured wind 288 

regimes closest to reality. 289 

3. Results 290 

 Wind speeds measured by the WG are compared against the corresponding gridded 10m 291 

surface winds available from various products. Initially, comparison was made between the 292 

entireties of all datasets. After hourly and 6 hourly binning methods were applied, each WG 293 

deployment rendered the following number of data points in the 6-hourly bins to compare to 6-294 

hourly wind products: CSIR2- 27 July 2015 to 02 November 2015: n = 394; CSIR1- 07 295 

December 2015 to 07 February 2016: n = 252 (Figure 3).  296 

In order to understand the degree of variance from the mean of each product, the mean 297 

and standard deviation of all wind products per wind speed category are provided in Table 2. The 298 

mean for the varying wind speed categories increases with respect to wind speed. Additionally, 299 

the magnitude of increase in the mean is fairly uniform between low and medium wind speeds 300 

(on average an increase of 2-3 m s-1, except for both CSIR series which have an increase of ~5-6 301 

m s-1).  However, this magnitude varies significantly between medium and high wind speed 302 

categories for all wind products. For instance, during both time series the differences in the 303 

medium and high wind means of the SW product increased on the order of 1-2 m s-1, while the 304 

differences for other wind products were on the order of 5-7 m s-1. 305 

During the CSIR2 WG time series in 2015 the SW, ECMWF, and CFSv2 products 306 

underestimated the mean state by approximately 0.3 m s-1 while the NCEPII product 307 

overestimated the mean state by approximately 1.1 m s-1. All wind products underestimated the 308 

mean state of the winds recorded by the CSIR1 WG by approximately 2.9 m s-1 in 2015-2016, 309 

although the underestimation of the NCEPII product was on average just 1.3 m s-1 less than the 310 
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in situ data. The variance of the mean of the WG data, as depicted by the standard deviation, is 311 

consistent at low and medium wind speeds, and increases slightly (approximately 20% increase) 312 

for high wind speeds. The only wind product which depicted this trend was NCEPII and during 313 

both time series, this product’s low wind speed category had a lower variance (averaged ±3.2 m 314 

s-1) with respect to the variance of the high wind speed category (averaged ±4.0 m s-1). The SW 315 

product exhibited low variance (averaged ±2.9 m s-1) with low and high speeds, while the 316 

greatest variance from the mean was at medium wind speeds (averaged ±3.2 m s-1). The 317 

ECMWF product consistently exhibited a trend of decreasing variance with an increase in wind 318 

speed (averaged low wind variance ±2.6 m s-1 compared to averaged high wind variance of ±2.2 319 

m s-1). The CFSv2 product exhibited the most consistent variance across time series and wind 320 

speed categories with an average variance of ±2.9 m s-1 for the CSIR2 time series, and an 321 

average variance of ±2.3 m s-1 for the CSIR1 time series. 322 

Further statistical comparison was conducted using root mean square error, mean bias, 323 

and the correlation coefficient (Table 3). Globally, there is a tendency for satellite product wind 324 

speed errors, as depicted by RMSE, to be greater in the presence of low and high winds 325 

(Carvalho et al., 2013). This trend was especially apparent for the SW product during the CSIR2 326 

time series. However, also during this time series the ECMWF, CFSv2, and NCEPII products 327 

exhibited the highest RMSE for the low wind speed category. For the CSIR1 time series, the 328 

SW, ECWMF, and CFSv2 products exhibited the opposite trend where the high wind speed 329 

category had the highest RMSE. Only the NCEPII product exhibited the trend described by 330 

Carvalho et al. (2013) during this time series. The ECMWF product exhibited the lowest RMSE 331 

across all wind speed categories during the CSIR2 time series, whereas during the CSIR1 series 332 
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the NCEPII product had the lowest RMSE for the all, medium and high wind speed categories 333 

(outperformed by CFSv2 and ECMWF for the low wind speed category).  334 

The time series correlation using data collected by WG CSIR2 from July 2015 to 335 

November 2015 (Figure 4) represents an extensive austral winter to spring dataset while the time 336 

series collected by WG CSIR1 from December 2015 – February 2016 (Figure 5) represents an 337 

austral summer dataset of in situ observations. Related confidence levels of the correlations can 338 

be found in Table 3. For both time series, the SW product performed poorly across all wind 339 

speed categories and the majority of the correlations fell outside of confidence intervals. The SW 340 

product was observed to consistently have the highest error, especially so during high winds. 341 

Overall the lowest error varies, but is shown by the ECMWF wind product during the CSIR2 342 

time series (all wind speed RMSE = 2.62 m s-1) and by the NCEPII product during the CSIR1 343 

time series (all wind speed RMSE = 2.52 m s-1). For the all wind speed and medium wind speed 344 

categories, the ECMWF product had the highest correlation coefficients overall with respect to 345 

the WG in situ data.  346 

ECMWF exhibited the following correlation coefficients for the all wind speed category: 347 

0.76 and 0.93, and the following coefficients for the medium wind speed category: 0.40 and 0.81 348 

(Table 3). Low wind speeds are best represented overall by the CFSv2 product, with correlation 349 

coefficients of 0.21 and 0.58, respectively. Statistically, the NCEPII product outperformed all 350 

other products in the high wind speed category with coefficients of 0.74 and 0.82, even though it 351 

significantly overestimated the magnitude of low and high winds during the CSIR2 time series 352 

(Figure 4). This overestimation positively skews the overall correlation of the NCEPII with the 353 

in situ data, which would suggest that it is not best suited to represent the temporal variability of 354 

this particular time series even though the statistics in Table 3 would suggest otherwise. 355 
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Therefore, the CFSv2 and ECMWF products similarly best represent the high wind speed 356 

category and in general best represent the temporal variability of the wind field during this 357 

sampling period.  358 

The bias exhibited by all wind products with respect to the data collected by the WG 359 

ranged from as small as -0.18 m s-1 (CFSv2 vs CSIR2 – 2015 all wind speed category) to as large 360 

as -9.23 m s-1 (SW vs CSIR1 2015-2016 high wind speed category). Similar to the RMSE, the 361 

trends in bias are different during each time series. During the CSIR2 time series (July – 362 

November 2015) the bias for the ECMWF, CFSv2, and NCEPII products remained fairly 363 

consistent across wind speed categories, but exhibited a positive bias for low winds and a 364 

negative bias for medium and high winds (exception- NCEPII high winds). The SW product 365 

during this time series exhibited a highly positive bias of +3.14 m s-1 for the low speed category, 366 

-0.49 m s-1 for the medium wind speed category, and -3.80 m s-1 for the high wind speed 367 

category. This trend in bias was only exhibited by the SW and ECWMF products during the 368 

CSIR2 time series (July – November 2015) and causes the SW product to appear better in 369 

performance than the NCEPII product in this respect (SW all wind speed bias = -0.42 m s-1, 370 

NCEPII all wind speed bias = +1.13 m s-1). During the CSIR1 time series (December 2015- 371 

February 2016) all products exhibited a systematic increase in bias with an increase in wind 372 

speed; however, the magnitude of increase was largest for the SW and smallest for the NCEPII 373 

product. Additionally, during this time series, all products exhibited a negative bias, indicative of 374 

an underrepresentation of the measured wind field (exception- SW low wind speed category). 375 

Figure 6 visualizes the wind speed residuals from the wind products. There is an 376 

observed offset between the linear fit for each time series across all wind products; the CSIR2 377 

time series exhibits residuals on average 2 m s-1 higher than the CSIR1 time series. The SW 378 
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product is observed to consistently overestimate low wind speeds, and significantly 379 

underestimate high wind speeds. The ECMWF and CFSv2 products exhibit very similar trends in 380 

residuals and only slightly overestimate low wind speeds and slightly underestimate high wind 381 

speeds. The NCEPII product performs differently per time series by having the smallest residuals 382 

at highest wind speeds during the CSIR2 time series, and the largest residuals at highest wind 383 

speeds during the CSIR1 time series. Although each product performs slightly different from one 384 

another, they all follow the same trend: overestimating low wind speeds, and underestimating 385 

high wind speeds. 386 

To assess which of the wind products offers a characterization of the WG wind regime 387 

closest to reality, a Weibull PDF is used (Figure 7). For the CSIR2 time series (July 2015 - 388 

November 2015), the ECMWF product wind speed frequency distribution is almost identical to 389 

the WG frequency distribution, with the CFSv2 product being a close second. The SW product 390 

exhibits a similar curve but significantly overestimates the frequency of the medium wind speeds 391 

while underestimating frequencies of high wind speeds. The NCEPII product underestimates the 392 

frequencies of low and medium wind speeds and overestimates the frequencies of high wind 393 

speeds during austral spring. However, during the CSIR1 time series (December 2015 - February 394 

2016), the NCEPII product best represents the frequency distribution of the in situ wind speeds. 395 

During austral summer the SW, ECMWF, and CFSv2 products overestimate the frequency of 396 

low and medium wind speeds, and underestimate the frequency of high wind speeds. While the 397 

in situ wind speed frequency distribution varies between the two time series, the products 398 

consistently estimate similar frequency distributions. This could be a result of sensor calibration 399 

offsets between the Airmar sensors and/or a seasonal change in the wind distributions between 400 

the two time series. When compared to the other products, the SW product systematically 401 
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represented the wind fields having higher frequencies of lower wind speeds. The ECMWF and 402 

CFSv2 products are characterized by a more even frequency distribution across all wind speed 403 

categories, while the NCEPII product tended to introduce reduced variability in the wind speed 404 

frequency distribution. It was observed that the higher the maximum wind speed of the wind 405 

product, the greater the variability and the more even the distribution of wind speeds. 406 

 407 

4. Discussion 408 

  4.1 Comparing field data to global wind products 409 

 At global scale, numerous gridded scatterometer and/or reanalysis wind products such as 410 

QuikSCAT, Oceansat-2 Scatterometer (OSCAT) and Cross-Calibrated Multi-Platform (CCMP), 411 

tend to overestimate the true wind speed exponentially with respect to wind intensity (Carvalho 412 

et al., 2013), and have the highest margins of error during low and high wind events (Sudha et 413 

al., 2013; Alvarez et al., 2014; Jayaram et al., 2014). However, because various wind products 414 

have not been rigorously inter-calibrated, any comparison between satellite- and model derived 415 

wind data- with in situ data will only give relative information on accuracy (Vogelzang et al., 416 

2012).   417 

 Based on our results, the performance of each product varied with respect to time of year 418 

and wind strength. The SW product consistently underestimated the wind fields and exhibited 419 

poor correlation across all wind speeds. As such it is not considered the preferred wind product 420 

for use in process understanding of upper ocean dynamics or realistic numerical analysis in the 421 

Southern Ocean. This may, in part be attributed to the fact that while SW data are available at a 422 

relatively high spatial resolution (0.25° x 0.25°), it is a gridded satellite product. This product 423 
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uses a simple objective analysis method (spatial-temporally weighted interpolation) to generate a 424 

gridded and blended product (Zhang, 2006). This method of blending satellite observations 425 

minimizes but does not completely eliminate data gaps. As such, the high resolution of spatial 426 

and temporal sampling conducted by WG technology may not be represented accurately by the 427 

SW dataset. There is a dearth of in situ observations in this remote ocean, which leads to 428 

difficulties in validation of any given wind product. This is further amplified by our poor 429 

understanding of the surface boundary layer, where accurate estimates of both momentum and 430 

heat fluxes are poor and likely contribute to inaccurate algorithms and bulk formulas that are 431 

used to derive satellite wind estimates (Gille et al., 2016). Furthermore, such a gap in 432 

observational input may lead to inadequate assimilation and parametrization of the boundary 433 

layer and surface frictional processes. This can ultimately impact how we derive and model 434 

(reanalyse) wind estimates to produce gridded wind products. SW also poorly represent wind 435 

estimates at different wind speed thresholds, particularly at high wind states. This indicates that 436 

there may be issues with how satellite scatterometer data is interpreted during extreme events 437 

which could be a result of high sea state (swell), surface wave breaking and surface turbulence 438 

all affecting the backscatter observed by the satellite. The strong performance of all reanalysis 439 

wind products in this study is indicative of improved algorithms and model parameterisations for 440 

different wind speeds related to different sea states.   The improved performance of both the 441 

ECMWF and CFSv2 products may be attributed to the high spatial resolution of the datasets 442 

(0.125° x 0.125°, and 0.205° x 0.204° respectively) that take into account finer scale variability 443 

in the wind field and meteorological processes. In this study, four of the ECMWF sampling 444 

locations fall either directly on or within a tenth of a degree (~10 km) away from the 445 

circumference of the octagon sampling pattern (Figure 2) of the WGs for both time series. For 446 
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the NCEPII product, the nearest point of reference to the majority of the in situ measurements is 447 

roughly 100 km (see Figure 2). Such low resolution data could lead to larger uncertainties 448 

between NCEPII and the in situ measurements. Overall, the ECMWF product performs best 449 

(with all wind speed correlations of 0.76 and 0.93) at consistently representing the temporal wind 450 

field variability as observed by the WG. 451 

 During the CSIR2 time series (July 2015 – November 2015), measures of error and bias 452 

for ECMWF and CFSv2 were lower than for NCEPII for all wind speed categories. However, 453 

during the CSIR1 time series (December 2015- February 2016) the NCEPII product outperforms 454 

all other products with regard to error and bias. While the CFSv2 product is better than ECMWF 455 

at representing the mean wind state of low and medium wind speeds, ECMWF is better at 456 

representing the temporal variability of the wind field magnitude. Upon closer inspection of the 457 

performance of the NCEPII product, it best represented the mean wind state by exhibiting similar 458 

trends in standard deviation across wind speed categories. For example, across time series the 459 

NCEPII product had similar deviations from the mean of the low and medium wind speed 460 

categories, and a greater deviation for the high wind speed category. This trend is also depicted 461 

by the in situ data (Table 2); however, all other products exhibit opposing trends in deviation 462 

from the mean. Due to these factors, the NCEPII product is best at representing the mean wind 463 

state and deviation from the mean state, particularly during periods of high wind speeds. 464 

However, this product should be used with caution, given that NCEPII derives its overall high 465 

correlation through its overestimation of low and high wind speeds (Figure 6). 466 

 The ability of a product to best represent the wind speed frequency distribution is 467 

illustrated in Figure 7. Findings by Pickett et al. (2003) and Tang et al. (2004) suggest that 468 

satellites measure higher frequencies of strong winds and lower frequencies of weak winds. 469 
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However, during this study the frequency distribution of the in situ wind speeds varied between 470 

times series, while the frequency distribution of the satellite product wind speeds remains 471 

consistent. As such, a different product for each time series best represented the frequency 472 

distribution of observed wind speeds (Figure 7). The SW product consistently showed higher 473 

frequencies of low wind speeds which did not reflect the frequency distribution of the in situ 474 

winds for either time series. ECMWF and CFSv2 similarly showed a more uniform distribution 475 

of wind speed frequencies which almost perfectly matched the frequency distribution measured 476 

by the CSIR2 WG during the July – November 2015 time series. There was an observed 2.52 m 477 

s-1 increase in the mean wind speed of the CSIR1 time series (December 2015 – February 2016) 478 

with respect to the CSIR2 time series (Table 2). NCEPII consistently showed a broader 479 

distribution of speed frequencies, and thus this product best represented the frequency 480 

distribution of wind speeds during the CSIR1 time series. 481 

Satellite derived wind data as well as reanalysis and model products can be very different 482 

from in-situ anemometer data in that they tend to represent synoptic-scale wind perturbations. A 483 

study by Atlas et al. (1999) showed that satellite products can detect mesoscale features, however 484 

this representation is limited since satellite and NWP products are of lower spatial and temporal 485 

resolution (Carvalho et al., 2013). Anemometer wind data is closer to a temporal average of 486 

instantaneous moments, while satellite winds represent a spatial average of instantaneous 487 

moments (Pansieri et al., 2010). Studies have shown that in cases where a limited amount of data 488 

existed, such as from a single satellite, any interpolations or extrapolations were inaccurate in 489 

representing the true strength of mesoscale events (Isaksen and Stoffelen, 2000). Bearing this in 490 

mind, over most SW grids the number of observational input data points is over 40 (Zhang, 491 

2006). As such a multiple satellite blending scheme can be advantageous in  representing fine 492 
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scale wind perturbations in the Southern Ocean. ECMWF, on the other hand, is a reanalysis 493 

product using a sequential data assimilation scheme, advancing forward in time using 12 hourly 494 

analysis cycles (Dee et al., 2011). A temporally short-scale assimilation scheme could give 495 

ECMWF an advantage over other reanalysis products, such as NCEPII, in representing the 496 

temporal variability on shorter temporal scales, as is a dominant scale of this study. CFSv2 is a 497 

fully coupled ocean–land–atmosphere dynamical model using a global ocean data assimilation 498 

system (GODAS) operational at NCEP (Saha et al., 2014). This product is unique in that it 499 

makes retrospective forecasts to calibrate operational subsequent real time sub-seasonal and 500 

seasonal predictions (Saha et al., 2014). This calibration scheme could be why CFSv2 is a more 501 

rounded product and performs well in representing both the temporal variability and the mean 502 

wind state. The NCEPII product is also a model simulation (forecast/hindcast reanalysis); 503 

however, the data assimilation scheme is slightly different to ECMWF which is forced to 504 

conform to observational input. Using 4-D data assimilation methodology, observational input 505 

from ships, satellite, radiosonde, aircraft, and meteorological station observations are 506 

incorporated into NCEPII (Kalnay et al., 1996). An assimilation methodology with high input 507 

gives NCEPII the ability to represent regional climate dynamics (Kanamitsu et al., 2002), even 508 

though it is of the coarsest spatial resolution compared to all other wind products. 509 

  4.2 Wave Glider meteorological sampling assumptions and potential shortcomings  510 

Compared to conventional in situ meteorological observing platforms, such as ships and 511 

moorings, the WG has a low profile with respect to sea level with the Airmar sensor located just 512 

0.7m above the sea surface. As stated in the methods, all wind observations in this study are 513 

extrapolated to 10m above the sea surface for comparison to the wind products. However, this 514 

proximity of sampling so close to the sea surface may not fully comprehend the impact of 515 
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surface friction and wave sheltering of the true wind field, especially in the case of extreme wind 516 

events or storms where large swell conditions of the Southern Ocean may impact the WG to 517 

product comparison. This scenario may explain the greater observed bias between the WG and 518 

product winds as a function of increasing wind speed and the impacts felt by the associated 519 

increase in sea state. This would suggest that wind observations from near surface platforms 520 

measure the winds between waves rather than the wind field ‘above’ the ocean surface. As such 521 

WGs are likely prone to underestimating wind speeds, particularly in the presence of large 522 

waves, and so are more suited to characterizing wind variability versus wind speed magnitude. In 523 

future deployments, ship-based meteorological observations could be used to compare with the 524 

WG observations to assess the magnitude and behavior of these potential inaccuracies in varying 525 

sea states and wind regimes. In addition, the Airmar sensor is prone to larger errors at higher 526 

wind speeds (see Methods section), which could contribute to the enhanced bias with higher 527 

wind speeds.  528 

Furthermore, the WG measures absolute wind conditions at a particular location, while 529 

scatterometers measure wind relative to a moving ocean surface (Sudha and Rao, 2013). 530 

Dickinson et al. (2001) observed that during alignment (both in same and opposite direction) of 531 

both wind and surface ocean current, scatterometer data tend to be under or overestimated. This 532 

could partially explain the bias observed by products using scatterometer data. Shown in Table 2, 533 

the greatest standard deviation of wind products is often associated with low wind speeds (except 534 

for NCEPII), potentially indicative of the scatterometer inability to appropriately detect weak 535 

wind speeds due to the limited detection limits of the sensor in measuring surface scatter caused 536 

by wind-surface interaction. Additionally, the relation between wind and backscatter is provided 537 

by an empirical geophysical model function. However, because the quantity of backscatter 538 
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cannot be obtained during in situ sampling, model functions have varying methods of 539 

interpretation and subsequent assumptions which may not translate as intended for remote 540 

locations such as the Southern Ocean. An example of such an assumption is of the neutral 541 

stratification of the marine atmospheric boundary layer which is on average weakly unstable and 542 

the global average neutral equivalent wind is ~0.2 m s-1 stronger than real wind (Hersbach, 543 

2009). Ebuchi et al. (2002) note the generation of small-scale waves via wind stress also varies 544 

with respect to atmospheric stability, which in turn affects radar backscatter used to derive wind 545 

speed. In addition, the difference between surface air temperature and SST is largely responsible 546 

for variability in stability. In the condition of a stable boundary layer, neutral equivalent winds 547 

can be lower than real winds by as much as 0.5 m s-1 (Hersbach, 2009). A similar argument can 548 

be made for the WG where in this study the vertical transformation of WG data did not include 549 

information on the atmospheric stability because we have no observations of the relative 550 

humidity from the WG. It is possible that data transformation could be in the order of 0.7 m s-1 551 

greater in magnitude (Singh et al., 2013). In future deployments and glider experiments, the 552 

measurement of the atmospheric stability via relative humidity - not yet available on sensors 553 

located in such proximity to the sea surface - should be included in order to reduce uncertainty in 554 

the WG derived winds. 555 

  4.3 Broader implications 556 

Ocean circulation modelling, climate change estimation, and numerical weather 557 

predictions are heavily dependent on the accuracy of input of meteorological information. Upper 558 

ocean dynamics are closely linked to atmospheric variability, particularly in the Southern Ocean 559 

where wind magnitudes and heat flux variations are great. As mentioned previously, the mid-560 

latitude regions of the Southern Ocean are host to the strongest wind fields at the ocean surface. 561 
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If these winds are not accurately represented, models will incorrectly simulate a range of 562 

processes and parameters such as air-sea exchanges of heat and moisture, lateral advection, 563 

stratification and mixed layer dynamics (frontal formation and instabilities), Ekman pumping and 564 

transport. Given the importance of this, the present study and others shows that in many cases the 565 

wind fields are poorly represented.  566 

Upper ocean models which include satellite-derived wind speed input do not accurately 567 

represent variance in mixed layer depth (MLD) and SST. Ocean circulation models have shown 568 

the sensitivity of the MLD to the gustiness in the wind (Lee et al., 2008). Turbulent mixing and 569 

subsequent buoyancy forcing caused by sea surface winds strongly influences the MLD. As the 570 

MLD shallows, high wind events are observed to have a greater impact on the deepening of the 571 

mixed layer (Carranza and Gille, 2015). Carranza and Gille (2015) observed that during high 572 

wind events, water from below the mixed layer is entrained in the upper ocean as the mixed layer 573 

deepens. Swart et al. (2015) observe with high-resolution glider datasets that this variability of 574 

the MLD is driven by synoptic storms (4-9 days) where turbulent mixing deepens the surface 575 

mixed layer, while quiescent wind episodes allow the upper ocean to restratify and subsequently 576 

shoal the MLD (du Plessis et al, 2017). This wind-driven mixing also influences SST, where cold 577 

water from below the MLD is entrained in the upper ocean. This in turn influences the mixed 578 

layer heat budget (Bonekamp et al., 1999) and produces cooler SSTs. Carranza and Gille (2015) 579 

found a statistically significant negative correlation between wind speed and SST anomalies, and 580 

that wind speed alone can explain as much as 80% of the variance observed in SSTs. The 581 

accurate representation of these upper ocean dynamics has been proven to have important 582 

implications for numerous chemical, biogeochemical and biological processes (e.g. Thomalla et 583 
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al., 2011; Fauchereau et al., 2011; Swart et al., 2015; Carranza and Gille 2015), as well as 584 

biogeochemical models (e.g. Nicholson et al., 2016), that are not elaborated on in this study.   585 

 586 

5. Conclusion 587 

Predictions of heat, moisture, and momentum exchanges between the ocean and the 588 

atmosphere remain uncertain in data sparse regions, such as the Southern Ocean (Gille et al., 589 

2016). We use high-frequency observations of wind stress obtained from WG deployments in the 590 

Subantarctic Ocean to compare with four available satellite scatterometer and reanalysis global 591 

wind products. It was found that the NCEPII product best represented the mean wind state in 592 

certain conditions, namely with respect to the high wind speed category correlations for both 593 

time series (0.74 and 0.82, respectively). Overall, ECMWF most consistently represented the 594 

temporal wind field variability as observed by the glider, by representing the highest ‘all’ wind 595 

speed correlations with coefficients of 0.76 and 0.93 for the independent time series. CFSv2 was 596 

a close performer to ECMWF in its representation of the temporal wind field variability with 597 

correlations differing on average < 0.05 from the ECMWF correlations with the WG. However, 598 

on average CFSv2 had a slightly higher bias and RMSE (on average < 0.2 m s-1) compared to 599 

ECMWF. The results clearly showed that the SW product performed poorly at representing the 600 

mean or wind stress variability (majority of the correlations <0.1) compared to those observed by 601 

the WG.  602 

The overall comparison between WG winds and gridded products in this study provide 603 

confidence that autonomous surface vehicles, such as the WG, can be used to understand and 604 

validate satellite-derived wind estimates. Further use of such vehicles should be supported to 605 

provide improved time and space scale data sets and data volumes, particularly in remote and 606 
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harsh regions, such as the high-latitude oceans. There is a need to correctly parameterize 607 

transient and synoptic scale wind fields in order to improve depictions of decadal and century 608 

scale changes in ocean-atmosphere relationships.  609 

  610 
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Table and Figure captions:  789 

 790 

Table 1: Characteristics of the different wind products used in this study 791 

 792 

Table 2: The mean and standard deviation of all wind products and WG data per wind speed 793 

category, as defined in Section 2.3. All bold product values indicate the closest match to the WG 794 

data. 795 

 796 

Table 3: Comparison between in situ WG and satellite/reanalysis products, which includes the 797 

wind speed error per wind speed category, root mean square error, bias, and correlation 798 

coefficients. The bold values highlight the wind product providing the closest match with the in 799 

situ data (i.e. the smallest value of error or bias and the highest value of the correlation 800 

coefficient). All correlation coefficients > |0.24| exhibit a confidence interval >99%. The number 801 

of comparative observations are shown by ‘N’. 802 

 803 

Figure 1. (a) The study region in the Subantarctic Ocean, with the main location of where the in 804 

situ data was collected at 43°00'S 8°30'0E (indicated by black square) and overlaid on the 805 

monthly averaged ECMWF wind speeds (m s-1) for December 2015. The mean locations of the 806 

Southern Ocean fronts are overlaid (solid black curves) according to Swart et al., 2010. (b) The 807 

Liquid Robotics SV2 Wave Glider with the Airmar weather station indicated (photo credit: Fred 808 

Fourie).  809 

 810 
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Figure 2:  Map of sampling region in the Southern Ocean, centered at 43°00'S 8°30'0E. The WG 811 

sampling locations, encompassing two separate deployments, are indicated with respect to spatial 812 

distribution of gridded wind products.  813 

 814 

Figure 3: Comparison of wind products (colored curves) with in situ WG data (black line) and 815 

upper and lower limits of each product dotted lines of their respective colors. (a) WG CSIR2, 816 

July - November 2015. (b) WG CSIR1, December 2015 – February 2016. Data gaps in (a) 817 

represent periods when the meteorology sampling was stopped in order to save battery power 818 

during poor solar charging periods in winter-spring. SW represents the SeaWinds product. 819 

 820 

Figure 4: Comparison of wind products with in situ (CSIR2 WG) data collected July 2015 – 821 

November 2015 (austral winter-spring). Wind speed categories are determined using the lower 822 

and upper quartiles of the in situ data. A linear fit for each wind speed category is shown. 823 

 824 

Figure 5: Comparison of wind products with in situ (CSIR1 WG) data collected December 2015 825 

– February 2016 (austral summer). Wind speed categories are determined using the lower and 826 

upper quartiles of the in situ data. A linear fit for each wind speed category is shown. 827 

 828 

Figure 6: Wind speed residuals (wind product minus in situ data) for both WG time series. 829 

Linear fit for each time series and product is displayed in their respective colors.  830 

 831 
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Figure 7:  Wind speed frequency distribution (Weibull PDF) for all products (SW, ECMWF, 832 

CFSv2, and NCEPII) compared to in situ wind collection by Wave Gliders (a) CSIR2 and (b) 833 

CSIR1. 834 

  835 
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Tables and Figures: 836 

 837 

Table 1: Characteristics of the different wind products used in this study 838 

    839 

 840 

 841 

 842 

 843 

 844 

 845 

 846 

 847 

 848 

 849 

Wind 

Products 

Time (h) 

Resolution  

Spatial 

Resolution 

Reference Time Coverage 

SW 6 0.25° x 0.25° Zhang 2006 

09 July 1987 - 

Present 

ECMWF 6 0.125° x 0.125° Dee et al. 2011 1979 – 31 Jan 2016 

CFSv2 6 0.205° x 0.204° Saha et al. 2014 

01 April 2011 - 

Present 

NCEPII 6 1.875° x 1.904° Kanamitsu et al. 2002 1979 - Present 
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 850 

Table 2: The mean and standard deviation of all wind products and WG data per wind speed 851 

category, as defined in Section 2.3. All bold product values indicate the closest match to the 852 

WG data.  853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 

 
ALL  

(m s-1) 

LOW 

(m s-1) 

MEDIUM 

(m s-1) 

HIGH 

(m s-1) 

CSIR2 9.98 ± 3.76 5.21 ± 1.32 9.93 ± 1.46 14.83 ± 2.03 

SW 9.63 ± 3.24 8.42 ± 3.06 9.51 ± 3.37 11.10 ± 2.49 

CFSv2 9.80 ± 3.97 6.30 ± 3.04 9.51 ± 2.86 13.86 ± 2.93 

ECMWF 9.58 ± 3.64 6.25 ± 2.92 9.39 ± 2.57 13.26 ± 2.57 

NCEPII 11.11 ± 5.03  7.39 ± 3.81 10.52 ± 3.63 16.00 ± 4.70 

CSIR1 12.50 ± 4.79 6.76 ± 1.84 12.20 ± 2.06 18.82 ± 2.53 

SW 8.57 ± 3.14 7.36 ± 2.93 8.67 ± 3.14 9.59 ± 2.99 

CFSv2 9.39 ± 4.05 5.17 ± 2.16 8.96 ± 2.39 14.50 ± 2.32 

ECMWF 9.21 ± 3.90 4.95 ± 2.28 8.88 ± 2.16 14.12 ± 2.03 

NCEPII 11.15 ± 4.97 6.72 ± 2.70 10.67 ± 2.80 17.28 ± 3.41 

TIME SERIES 

CSIR2: July 2015 - Nov. 2015 

CSIR1: Dec. 2015 - Feb. 2016 

LOW WIND SPEEDS 

CSIR2 ≤ 7.3 m s-1   

CSIR1 ≤ 9.0 m s-1   

 

MEDIUM WIND SPEEDS 

7.3 m s-1 ≤ CSIR2 ≤ 12.4 m s-1 

9.0 m s-1 ≤ CSIR1 ≤ 16.0 m s-1  

  

HIGH WIND SPEEDS 

CSIR2 ≥ 12.4 m s-1   

CSIR1 ≥ 16.0 m s-1   
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Table 3: Comparison between in situ WG and satellite/reanalysis products, which includes the 863 

wind speed error per wind speed category, root mean square error, bias, and correlation 864 

coefficients. The bold values highlight the wind product providing the closest match with the in 865 

situ data (i.e. the smallest value of error or bias and the highest value of the correlation 866 

coefficient). All correlation coefficients > |0.24| exhibit a confidence interval >99%. The number 867 

of comparative observations are shown by ‘N’. 868 

 869 

 870 

 
CSIR1 

vs: 

ALL  

(m s-1) 

LOW 

(m s-1) 

MEDIUM 

(m s-1) 

HIGH 

(m s-1) 
N 

RMSE 

SW 6.37 3.23 5.24 9.84 243 

CFSv2 3.58 2.39 3.51 4.57 245 

ECMWF 3.70 2.43 3.42 5.06 217 

NCEPII 2.52 2.75 2.40 2.50 245 

BIAS 

SW -3.92 +0.60 -3.53 -9.23 243 

CFSv2 -3.06 -1.55 -3.19 -4.32 245 

ECMWF -3.16 -1.55 -3.16 -4.78 217 

NCEPII -1.31 -0.75 -1.47 -1.54 245 

R^2 

SW 0.25 0.16 -0.08 0.24 243 

CFSv2 0.93 0.58 0.79 0.81 245 

ECMWF 0.93 0.59 0.81 0.77 217 

NCEPII 0.90 0.35 0.73 0.82 245 

 
CSIR2 

vs: 

ALL  

(m s-1) 

LOW 

(m s-1) 

MEDIUM 

(m s-1) 

HIGH 

(m s-1) 
N 

RMSE 

SW 4.25 4.58 3.64 4.95 250 

CFSv2 2.81 3.22 2.76 2.47 259 

ECMWF 2.62 3.14 2.45 2.35 259 

NCEPII 3.73 4.47 3.34 3.64 259 

BIAS 

SW -0.42 +3.14 -0.49 -3.80 250 

CFSv2 -0.18 +1.09 -0.43 -0.97 259 

ECMWF -0.40 +1.04 -0.54 -1.57 259 

NCEPII +1.13 +2.18 -0.58 +1.17 259 

R^2 

SW 0.27 -0.03 0.05 0.01 250 

CFSv2 0.74 0.21 0.34 0.63 259 

ECMWF 0.76 0.17 0.40 0.73 259 

NCEPII 0.71 0.07 0.42 0.74 259 

WG CSIR 2 

July. 2015 -  

Nov. 2015 

LOW WIND 

WG ≤ 7.3 m s-1  

 

MEDIUM 

WIND 

7.3 m s-1 ≤ WG;  

WG ≤ 12.4 m s-1  

  

HIGH WIND 

WG ≥ 12.0 m s-1   

WG CSIR 1 

Dec. 2015 -  

Feb. 2016 

LOW WIND 

WG ≤ 9.0 m s-1   

 

MEDIUM 

WIND 

9.0 m s-1 ≤ WG;  

WG ≤ 16.0 m s-1  

  

HIGH WIND 

WG ≥ 16.0 m s-1   
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 871 

 872 

Figure 1. (a) The study region in the Subantarctic Ocean, with the main location of where the in 873 

situ data was collected at 43°00'S 8°30'0E (indicated by black square) and overlaid on the 874 

monthly averaged ECMWF wind speeds (m s-1) for December 2015. The mean locations of the 875 

Southern Ocean fronts are overlaid (solid black curves) according to Swart et al., 2010. (b) The 876 

Liquid Robotics SV2 Wave Glider with the Airmar weather station indicated (photo credit: Fred 877 

Fourie).  878 
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 879 

 880 

Figure 2:  Map of sampling region in the Southern Ocean, centered at 43°00'S 8°30'0E. The WG 881 

sampling locations, encompassing two separate deployments, are indicated with respect to spatial 882 

distribution of gridded wind products.  883 

 884 

 885 
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 886 

Figure 3: Comparison of wind products (colored curves) with in situ WG data (black line) and 887 

upper and lower limits of each product dotted lines of their respective colors. (a) WG CSIR2, 888 

July - November 2015. (b) WG CSIR1, December 2015 – February 2016. Data gaps in (a) 889 

represent periods when the meteorology sampling was stopped in order to save battery power 890 

during poor solar charging periods in winter-spring. SW represents the SeaWinds product. 891 

 892 
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.893 

 894 

Figure 4: Comparison of wind products with in situ (CSIR2 WG) data collected July 2015 – 895 

November 2015 (austral winter-spring). Wind speed categories are determined using the lower 896 

and upper quartiles of the in situ data. A linear fit for each wind speed category is shown. 897 

 898 

 899 

 900 

 901 

 902 
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 903 

Figure 5: Comparison of wind products with in situ (CSIR1 WG) data collected December 2015 904 

– February 2016 (austral summer). Wind speed categories are determined using the lower and 905 

upper quartiles of the in situ data. A linear fit for each wind speed category is shown. 906 

 907 

 908 

 909 

 910 

 911 
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 912 

Figure 6: Wind speed residuals (wind product minus in situ data) for both WG time series. 913 

Linear fit for each time series and product is displayed in their respective colors.  914 

 915 

 916 

 917 
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 918 

Figure 7:  Wind speed frequency distribution (Weibull PDF) for all products (SW, ECMWF, 919 

CFSv2, and NCEPII) compared to in situ wind collection by Wave Gliders (a) CSIR2 and (b) 920 

CSIR1. 921 

 922 




