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Abstract 

The identification, extraction, classification and mapping of detailed, but reliable Land Use or 

Land Cover (LULC) data play an increasingly important role in informed decision-making whether 

employed in urban planning and civil engineering, intensive agriculture, the natural and 

environmental sciences, for example. One way of extracting LULC information is through the use of 

algorithms that classify multispectral satellite images according to the required standard and user 

legend. The meaningful classification of heterogeneous urban and city landscapes however remains 

challenging and is performed using semi-automated pixel-based, object-based, or hybrid 

classification workflows. With the prevailing remote sensing technologies enabling professionals to 

integrate multidimensional data from various sources to improve the quality of LULC classification 

nowadays, it negated the dependency on (multi)spectral information alone. This study sought to 

explore how successful a single-acquisition pansharpened SPOT 6 image can be deconstructed into 

obtaining primary and secondary LULC classes. This was achieved using a comparison of the 

pixel-based versus segmentation-based classifiers, performed over Soshanguve Township in South 

Africa. The study further assessed the effect of integrating LiDAR derived 3D land surface data into 

both classification processes. A supervised Maximum Likelihood classifier was executed for the 

pixel-based routine, while the ERDAS IMAGINE Objective Tool was used for the segmentation-

based approach. A total of nine LULC classes were successfully identified from the classification. 

The results showed that the segmentation-based approach outperformed the pixel-based approach, 

yet when integrating height information both segmentation and pixel-based overall accuracies 

increased from 67.5 % to 78.8 % and 57.5 % to 73.8 %, respectively. 

 

1. Introduction 

The extraction of LULC information has over the years become important for various Earth 

observation applications in fields such as urban and town planning, transport and civil engineering 

(Bhaskaran et al., 2010). One way of extracting useful LULC information is through the 

classification of digital imagery. With the recent developments in Remote Sensing (RS) technology, 

satellite images now provide finer spatial resolutions which allow for the possibility of more 

detailed mapping of the urban landscapes (Jabari & Zhang, 2013). The classification of remotely 

sensed imagery is normally performed using object- or pixel-based approaches, or a hybrid of the 

two classification strategies. 
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Traditional pixel-based classifiers have been widely used for classifying optical imagery from 

satellites into meaningful LULC classes. With this approach LULC classification is performed by 

assigning pixels to classes using either supervised or unsupervised classifiers (Campbell & Wynne, 

2011). As high to very high spatial resolution imagery becomes more available, there is a need for 

new and improved classification routines that will classify this high resolution data (Warner et al., 

2009). Approaching sub-meter ground resolutions, classification algorithms that use a single 

analysis are often not able to extract the desired urban LULC information from this high resolution 

data (Visual Learning Systems, 2002), even after proper image pre-processing (such as atmospheric 

corrections and orthorectification).  This is because with high spatial resolution the pixel-based 

approach may classify neighbouring pixels into different land cover classes based on their spectra 

even though these pixels belong to the same land cover; hence the shift towards object-based image 

analysis (Blaschke & Strobl, 2001; Djenaliev & Hellwich, 2014).  Unlike the pixel-based approach 

which classifies pixels strictly according to their spectral information, the object-based approach 

uses both the spatial and spectral resolution to segment and then classify image features into 

meaningful objects (Xiaoxia et al., 2004). In the object-based approach homogeneous groups of 

pixels are delineated into meaningful objects based the object’s texture, shape, size and other useful 

information obtained from the imagery (Blaschke, 2010; Djenaliev & Hellwich, 2014). From the 

resulting segments, homogeneous image objects are extracted based on the local contrast. These 

homogeneous objects are then classified using traditional classification approaches such as nearest 

neighbour, or using knowledge-based approaches and fuzzy classification logic (Civco et al., 2002). 

Recent urban studies in Earth Observation (EO) show that there has been a shift from the coarser 

spatial resolution imagery, such as LANDSAT data, to high and even very high resolution imagery 

obtained by the SPOT 6/7, Worldview and Pleiades series of instruments, for instance. This shift is 

largely because high resolution imagery offers an ideal opportunity for detailed LULC classification 

in the urban context. However, the cost acquiring this high resolution data is often high, especially 

when working with larger geographic regions (Djenaliev & Hellwich, 2014). Even though there 

have been improvements in the spatial resolution of multispectral RS data, the imagery alone is still 

not sufficient to automatically classify heterogeneous urban landscapes at a city block level. Studies 

in literature are now moving towards data integration in order to improve the accuracy of urban 

LULC classification (Chavez et al., 1991; Pohl & Van Genderen, 1998). Data integration refers to 

the integration of information from various sources or sensors, such as the integration of LiDAR 

and optical data (Zhang, 2010). Vegetation penetrating LiDAR provides more accurate position and 

height information (structure) about objects on the face of the Earth but lacks direct information 

about other vital attributes such as colour and geometrical shape. High spatial resolution imagery, in 

this case, will offer more detailed information about the object’s attributes such as shape, texture 

and spectral information (Syed et al., 2005). Thus, integrating different datasets is promising for 

quality LULC extraction as demonstrated by Awrangjeb et al. (2010), who used LiDAR data and 

multispectral imagery for automatic detection of residential building. The results from their study 

show that the integration of the two remote sensing datasets allowed for the successful detection of 

urban residential buildings.  
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1.1 Study motivation 

Urban land cover mapping from remotely sensed data is important because it gives sound 

knowledge of the different land covers that exist on the surface of the Earth. In turn, it would assist 

Government in creating, updating, implementing laws and policies regarding current and future uses 

of land. With the continuous advancements in RS technology, we now have access to high spatial 

and spectral resolution data which allows for detailed land cover mapping in complex urban areas. 

Mapping complex urban land cover requires advanced methods that seek to produce a more 

accurate result. One way of doing so is moving away from the use of a single source of RS data to 

the integration of data from different sensors. An example of a study of this nature is a study 

conducted by Chen et al. (2009) where QuickBird and LiDAR data were integrated for hierarchical 

object-oriented classification of urban land cover. From the results obtained, the per-pixel based 

classification using just the QuickBird optical imagery was found to be 69.12 % whereas the 

integration of LiDAR and QuickBird datasets had an improved accuracy of 89.40 %. This clearly 

demonstrated that the integration of height and optical information does increase the classification 

accuracy. This study used a subset of a single SPOT 6 acquisition scene over a densely populated 

urban area to compare the traditional pixel-based versus the object/segmentation-based 

classification approach. The study further assessed the effect of integrating classified height 

information, derived from a LiDAR point cloud, into the preceding two classification routines.  

 

2. Study area  

The study was carried out in Soshanguve Township, whose history dates back to 1947. Previously 

this township was designated for migrants and got its name from the languages spoken in the area 

(i.e. Sotho, Shangan, Nguni, and Venda). Situated about 45km north of South Africa’s capital city, 

Pretoria in the Gauteng Province, the study area of almost 53km2 falls within the City of Tshwane 

Metropolitan Municipality (Figure 1) which covers a total area of approximately 6 298km2 and has 

an estimated population of 2 921 488. Soshanguve itself has a total area of 126.77km2 and an 

estimated population of 403 162 (Statistics South Africa, 2011). The region has a humid subtropical 

climate with long hot rainy summers and short cool to cold winters. According to the 2014 South 

African LULC dataset (GEOTERRAIMAGE 2014) obtainable from the Department of 

Environmental Affairs (DEA) and National Geo-spatial Information (NGI), the study area consists 

of approximately 60 % built-up (buildings and transport); 30 % urban vegetation (grasses, 

shrubs/bushes and trees) and 15 % natural vegetation (open woodland). 
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Figure 1. Location of the study area in the City of Tshwane, Gauteng Province 

 

3. Materials and Methods 

3.1 Remotely sensed data 

The SPOT 6 scene was obtained from the South African National Space Agency (SANSA) and 

used as primary input data for the study. The image was acquired in June 2014 and consisted of the 

Red, Green, Blue (RGB) and Near Infrared (NIR) bands (ground resolution of 6m), and an 

additional panchromatic band (ground resolution of 1.5m). Although the NIR band was available, 

this study used the RGB composite because it gave the best distinction between the different LULC 

than any other band combination when not relying upon widely-used vegetation indices. The 

preparation of the SPOT 6 subset was done in ArcGIS 10.x where the multispectral and 

panchromatic bands were fused to create a pansharpened 1.5m RGB image. Height information was 

obtained from a 2m normalised Digital Surface Model (nDSM) that was constructed from LiDAR 

data, and used to assess whether the integration of height metrics into the classification process 

could improve the overall classification results. 10cm spatial resolution colour ortho-photos 

acquired simultaneously with the LiDAR data (September 2013) were used to perform the 

verification of the allocated points. 

 

3.2 Classification  

Pixel based and segmentation based classifiers were used in the study to classify the imagery into 

bare soil; urban vegetation (grasses, shrubs/bushes and trees); natural vegetation (open woodland); 

waterbodies; and built-up areas (buildings and paved surfaces) as listed and described in Table 1. 

South Africa 
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Although the superclass ‘Urban Vegetation’ was gazetted as such in the 2016 South African Land 

Cover Classes and Definitions document, for the purpose of this study this class has been 

subdivided into three different subclasses (grasses, trees and Shrubs/bushes). Height classes were 

then integrated into the classification in order to assess its effect on the classification products.  

 

Table1. Land use/ Land cover descriptions 

LULC Class Description 

Bare soil Includes areas that have soil exposed. 

Built-up/buildings Includes all residential, commercial and industrial zones 

Built-up/paved Includes transport infrastructure and paved areas 

Grasses/short vegetation Includes all grasses and other short non-graminoid vegetation 

Shrubs/bushes Include all broad-leaved or bushes or woody vegetation within the urban and 
vegetated areas. 

Trees Woody vegetation with a distinct crown elevation of >1.5m above ground 

Waterbodies Includes natural water bodies along rivers 

Open woodland Natural woody vegetation of any height that is not Fynbos or Karoo shrubland. 
Canopies of the wooded vegetation layer cover less than 35% and more than 10% 
of the land surface 

 

Traditional pixel-based classification is the most commonly used technique for LULC extraction 

(Foody et al., 1992; Paola & Schowerngerdt, 1995; Breytenbach et al., 2013). For the purposes of 

this study, a supervised Maximum Likelihood (ML) classifier was used to classify the subset. Two 

classifications were executed for the pixel-based approach; one with and one without the integration 

of height information. For the classification without height integration, a maximum of ten training 

sites was selected to represent each LULC class. A total of 80 training sites were selected for this 

classification. According to Congalton (1991), the larger the number of training sites, the more 

accurate the spectral signature of each LULC class becomes. The signatures obtained from these 

training sites were then used in the supervised ML classification. This classifier systematically 

divided the study area into eight classes based on the spectral signature of the selected training sites. 

The classification output was then used to obtain the second classification; ML classification with 

height integration. 

The semi-automated feature extraction tool from ERDAS Imagine Objective 2015 version was 

used for the segmentation-based classification approach. Similar to the pixel-based approach, two 

classifications were executed for this classifier; one with and one without the integration of height 

information. A feature model consisting of seven sequenced process nodes (Figure 2) formed basis 

for LULC extraction without height integration in the segmentation-based method. ‘Raster Pixel 

Processor’ (RPP) was the first node of the feature model. Just like in the ML classification, training 

sites had to be defined for the eight LULC classes in this step. The trained pixels were then used in 

the pixel-based ‘Single Feature Probability’ (SPF) classification to create a pixel probability layer in 

which each pixel value represented the probability of that pixel being of an object of interest. 

 



6 
 

 

Figure 2. Objective Imagine segmentation-based classification steps in ERDAS 

 

A minimum of ten training sites was selected for each LULC. These training pixels had to be 

carefully chosen because the quality of the final object-based product depended on how well these 

training pixels were defined. The second node was the ‘Raster Object Creators’ (ROC) node. In this 

step, the pixel probability layer created from the RPP node was used to segment image features into 

objects, based on the specified thresholds. The optimum threshold for minimum value difference 

was 28 with a variation factor of 3.5 for this study. The probability and size filters were used in the 

‘Raster Object Operators’ (ROO) node to filter pixel objects. A minimum probability of ten percent 

and a size filter of two or more pixels were found to be the optimal threshold for the purposes of 

this study. The resulting raster from the ROO node was then vectorised using Polygon Trace on the 

‘Raster to Vector Conversion’ node. This raster contained pixels that were grouped into raster 

objects with associated probability values. The vectorised output was then labelled into the various 

LULC classes in the ‘Vector Cleanup Operators’ (VCO) node. Finally, the resulting labelled vector 

file was then converted back into raster resulting in a labelled segmentation-based classified output. 

This final product was then used to produce the segmentation-based classification with height 

integration output. 

 

3.3 Height Integration  

The second classification approach for the two classifiers was the with height integration method 

which followed the post-classification approach. In this classification the products of both the pixel-

based and segmentation-based classification were integrated with height information from the co-

registered 2m nDSM. The height integration procedure was carried out in GIS where each class 

from the previously classified imagery were used to extract height values that corresponded to it. 

For instance, to obtain height values for the buildings class, the buildings land cover from the 

classification was used as a mask to extract only height values that intersect with this LULC class. 
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This was done by using the Extract by Mask tool in ArcGIS. The extracted height values were then 

categorised into classes presented in Table 2, where any building pixel that had a height value of 

0.5m or less was classified as paved surface; and any pixel with a value greater than 0.5m was 

classified as a building. 

 

Table 2. Height classification 

Height (m) Class 

0-0.5 Grasses/short vegetation, Bare soil and Paved surfaces 

0.5-2.5 Medium shrub/bush, Buildings 

2.5-5 Medium bush/tree, Buildings 

>5.0 Tall trees 

 

The same was applied for the paved surfaces class in order to separate buildings from paved 

surfaces. From the bare soil class, any pixel that had a height of 0.5m and below was considered to 

be bare soil and any pixel with a height value greater than 0.5m was classified as buildings. The 

urban vegetation class was also separated according to the described height classes. The integration 

of height information allowed for the separation of the urban vegetation class which then resulted to 

an extra class, making it nine LULC classes compared to the eight found in the classification 

without height integration for both classifiers.  

 

3.4 Accuracy   

An accuracy assessment was carried out to determine how accurate the classified products 

represented the actual land cover on the ground. From the classified images, stratified random 

sampling was employed to generate points that represented each LULC class. This method uses the 

inverse of the ground truth verification method where random GPS points collected on the ground 

are used to verify the classification accuracy. The validation method employed used points 

extracted from the classified images. Each point was manually verified against the true land cover at 

that location as observed on the digital 10cm resolution colour ortho-photos. A total of 80 points 

were generated using the Create Random Points tool in ArcGIS. The number of verification points 

per LULC class for classifications with and without height information is shown in Table 3.  

 

Table 3. Number of verification points per LULC class 
Class Without height (n) With height (n) 

Bare soil 5 6 

Built-up/buildings 18 20 

Built-up/paved 17 18 

Grasses/short vegetation 15 16 

Medium shrubs/bush 5 7 

Medium bushes/tree n/a 7 

Tall trees 5 6 

Waterbodies 2 n/a 

Open woodland 13 n/a 

TOTAL 80 80 
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These points were allocated to each class according to the percentage area covered by that 

particular class. For instance, the waterbodies class would have fewer points compared to the 

grasses/ short vegetation class because of their different area coverages. For the classification with 

the integration of height information, the waterbodies class was not included in the verification 

because waterbodies are commonly artificially flattened on elevation models; therefore the nDSM 

will often give inconsistent height values for water. Furthermore, since the core focus of this study 

was to map heterogeneous urban land cover, the open woodland class was also not included in the 

‘with height’ verification because it is a natural vegetation class which had no contribution in 

achieving the main objective of this study. In the end of the verification process, there were four 

error matrices prepared to summarise the classification accuracy. 

 

4. Results and Discussion 

Two classifications were carried out for the pixel-based classification approach; one without 

height and one with the integration of height information (Figure 3A and 3B, respectively). From 

the graphical representation showing the ML classification without height integration (Figure 3A), 

it can be observed that the classifier was able to distinguish between the eight LULC classes. 

Although these are more defined in the classification with height integration (Figure 3B), the high 

spatial resolution alone was to some degree still capable of separating between the desired LULC 

classes. From the graphical representation in Figure 3B however, there is a clear distinction between 

buildings and paved surfaces. The integration of height also allowed for the separation between 

different vegetation heights. The spectral complexities of the urban landscape often result in the 

limitation of using the pixel-based method to separate LULC classes (Townshed et al. 2000), where 

part of the signal that is assumed to be coming from a given pixel may, in fact, be coming from 

surrounding terrain pixels and this is often overlooked in the pixel-based classification. This was the 

case in this study where roofs in the informal settlements of Soshanguve were classified as roads 

due to the similarities in spectral signatures of the two urban LULC classes.  

Two classifications were also carried out for the segmentation-based approach (Figure 4A and 

4B). This classifier used both spatial and spectral information to distinguish between various LULC 

classes.  Although careful attention was paid to the training of pixels, the issue of pixel confusion 

due to the spatial resolution of the imagery could not be totally eliminated in the early stages of 

pixel training. This can be seen on the results shown from the classification without height 

integration (Figure 4A), where many of the paved surfaces in the study area were classified as 

buildings. However, the integration of height information allowed for a better separation between 

these LULC classes. Overall, the segmentation-based approach with height integration produced a 

more meaningful graphical representation of the overall LULC class distribution across the study 

area (Figure 4B). In this classification, the buildings and roads were visually more defined than in 

the classification without height integration. 
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Figure 3. Pixel-based classification results; A) without height, B) with height 

 

   
 

Figure 4. Segmentation-based classification result; A) without height, B) with height 
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Four error matrices were created to determine the accuracy of the four classification routines 

(Tables 4, 5, 6 and 7). The overall results indicate that the segmentation-based classification 

approach outperformed the pixel-based approach in the identification of primary and secondary 

LULC classes without height integration, where pixel-based had an overall accuracy of 57.5 % 

(Table 4) and the segmentation-based approach had an overall accuracy of 67.5 % (Table 5). These 

results correspond to those of Myint et al. (2011), where they did a comparison between the 

extraction of urban land cover using per-pixel and object oriented methods of classification. From 

the results obtained, they reported that the object-based classifier obtained an accuracy of 90.40 % 

whereas the per-pixel method using ML had an overall accuracy of 67.60 %. 

 

Table 4. Classification Error matrix for pixel-based without height 

 
 

Table 5. Classification Error matrix for segmentation-based without height 

 
 

Integrating height information in both classifiers allowed for an improved overall accuracy 

particularly in separating buildings from paved surfaces that had similar spectral signatures. 

Furthermore, the confusion between bare soil and clay rooftops was minimised by adding height 

information to separate between these two LULC classes. In the vegetated areas, the integration of 

height data allowed for separation between short, medium and tall vegetation in the urban 

vegetation superclass. The integration of height information significantly improved the overall 

accuracies of both classifiers, with pixel-based increasing to 73.8 % (Table 6) and segmentation-

based increasing to 78.8 % (Table 7). Furthermore, it can be observed that adding height 

information significantly improved identification of existing buildings. Also, the Buildings class 

had a producer’s accuracy of 84.2 % and a user’s accuracy of 94.1 %. This result indicated that of 

the 84.2 % of the sites identified as buildings, 94.1 % of them are indeed buildings, according to 
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what could be interpreted as reality on the reference material. Although the overall accuracies for 

the two classifiers was satisfactory, they were below the minimum standard stipulated 85 % by the 

United States Geological Survey (USGS) general classification scheme (Anderson et al., 1976). The 

pixel-based classification without the integration of height data had an overall Kappa of 0.49 (Table 

4) which means that there was a fair agreement between the classification and the verification data.  

Pixel-based with height and segmentation-based both with and without height had Kappa values of 

0.62 (Table 5), 0.68 and 0.74 (Tables 6 and 7, respectively). These values are between 0.61 and 

0.80, which means that there was a substantial agreement between the classification and verification 

data according to Cohen (1960).  

 

Table 6. Classification Error matrix for pixel-based with height 

 
 

Table 7. Classification Error matrix for segmentation-based with height 

 

 

From the results obtained, a total of eight LULC classes were obtained from the single SPOT 6 

subset. One additional class was obtained from the integration of height data which then led to nine 

primary and secondary classes being recorded in this case. 

 

5. Conclusion 

The aim of this study was to use a comparison of pixel-based versus segmentation-based 

classifiers to classify imagery into urban vegetation (grasses, shrubs/bushes and trees), bare soil, 

waterbodies and built-up (buildings and paved surfaces) LULC classes over the Soshanguve 

Township, Tshwane. Maximum Likelihood classification was used for pixel-based and object-based 

feature extraction was used for the segmentation-based classification. Height data obtained from a 

qualified nDSM was then integrated into the two classifications to assess whether it would improve 

the classification accuracy. The overall results showed that the segmentation-based classifier 
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outperformed the pixel-based supervised ML classification even though integrating height 

information proved to have significantly improved the classification results for both classifiers. 

Height data also played a significant role in separating between the normally confused classes; such 

as the confusion that exists between exposed soils and certain building rooftops because they have 

very similar spectra (low separability).  

The classification results obtained from this single multispectral SPOT 6 image were satisfactory 

and can, to also take full advantage of the high temporal resolution offered by modern satellite 

constellations, be used further in time series analysis and change detection. For future studies, it is 

suggested that integrating height earlier on the workflow could prove advantageous. In that way, the 

differentiation of height for the various LULC does not depend on the initial classification. For 

instance, the accuracy of the post-classification height integration method solely depended on how 

accurate the initial classification was. Therefore, it is recommended that further studies use 

classification algorithms that will classify the height data with high confidence. Furthermore, future 

studies can investigate the inclusion of all four bands (red, green, blue and NIR) for the 

classification to establish if selecting all four bands could further improve the classification results, 

as achieved in the past with proven (or new) vegetation and soil indices on their own merits.  

 

6. References 

Anderson, JR, Hardy, EE, Roach, IT & Witmer, RE 1976, ‘A land use and land cover classification 

system for use with remote sensor data’, US Department of the Interior. Geological Survey, Professional 

Paper, vol. 964, US Government Printing Office. 

Awrangjeb, M, Ravanbakhsh, M & Fraser, CS 2010, ‘Automatic detection of residential buildings using 

LIDAR data and multispectral imagery’, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 65, 

no. 5, pp. 457-467. 

Bhaskaran, S, Paramananda S, Ramnarayan, M 2010, ‘Per-pixel and object-oriented classification 

methods for mapping urban features using Ikonos satellite data’, Applied Geography, vol. 30, no. 4, pp. 650-

665. 

Blaschke,T & Strobl, J 2001, ‘What’s wrong with pixels? Some recent developments interfacing remote 

sensing and GIS’, GeoBIT/GIS, vol. 6, pp. 12-17. 

Blaschke, T 2010. ‘Object based image analysis for remote sensing’. ISPRS journal of photogrammetry 

and Remote Sensing, vol. 65, no. 1, pp. 2-16. 

Breytenbach , A, Eloff, C, Pretorius E 2013, ‘Comparing three spaceborne optical sensors by fine scale 

pixel-based urban land cover classification products’, South African Journal of Geomatics, vol. 2, no. 4, pp. 

309-324. 

Campbell, JB & Wynne RH, 2011, Introduction to remote sensing. 5th edition, Guilford Press, New York. 

Chavez, P, Sides, SC & Anderson, JA 1991, ‘Comparison of three different methods to merge 

multiresolution and multispectral data- Landsat TM and SPOT panchromatic’. Photogrammetric 

Engineering and Remote Sensing, vol. 57, no. 3, pp .295-303. 

Chen, Y, Su, W, Li, J & Sun, Z 2009, ‘Hierarchical object oriented classification using very high 

resolution imagery and LIDAR data over urban areas’, Advances in Space Research, vol. 43, no. 7, pp. 1101-

1110. 



13 
 

Civco, DL, Hurd, JD, Wilson, EH, Song, M & Zhang, Z 2002, ‘A comparison of land use and land cover 

change detection methods’, In ASPRS-ACSM Annual Conference. Washington, DC, April 2002. 

Cohen, J 1960, ‘A coefficient of agreement for nominal scales’. Educational and Psychological 

Measurement, vol. 20, pp. 37-46. 

Congalton, RG 1991, ‘A review of assessing the accuracy of classifications of remotely sensed data’, 

Remote sensing of environment, vol. 37, no. 1, pp. 35-46. 

Djenaliev, A & Hellwich, O 2014, ‘Extraction of built-up areas from Landsat imagery using the object-

oriented classification method’, 9th International Symposium on Applied Informatics and Related Areas, 

Székesfehérvár, Hungary, 12 November 2014. 

Foody, GM, Campbell, NA, Trodd, NM & Wood, TF 1992, ‘Derivation and applications of probabilistic 

measures of class membership from the maximum-likelihood classification’, Photogrammetric engineering 

and Remote Sensing, vol. 58, no. 9, pp.1335-1341. 

GEOTERRAIMAGE 2014, 2013 - 2014 South African National Land Data User Report and MetaData, 

February 2015, v.05, GEOTERRAIMAGE, Pretoria, South Africa, pp. 1-53. 

Jabari, S & Zhang, Y 2013, ‘Very high resolution satellite image classification using fuzzy rule-based 

systems’ Algorithms, vol. 6, no. 4, pp. 762-781. 

Myint, SW, Gober, P, Brazel, A, Grossman-Clarke, S, & Weng, Q 2011, ‘Per-pixel vs. object-based 

classification of urban land cover extraction using high spatial resolution imagery’. Remote Sensing of 

Environment, vol. 115, no. 5, pp. 1145-1161. 

Paola, JD & Schowengerdt, RA 1995, ‘A detailed comparison of backpropagation neural network and 

maximum-likelihood classifiers for urban land use classification’. IEEE Transactions on Geoscience and 

Remote Sensing, vol. 33, no. 4, pp. 981-996. 

Pohl, C & Van Genderen, JL 1998. ‘Review article multisensor image fusion in remote sensing: concepts, 

methods and applications’. International Journal of Remote Sensing, vol. 19, no. 5, pp. 823-854. 

Statistics South Africa, 2011. The people of South Africa Population Census, 2011. Statistics South 

Africa, Pretoria. 

Syed, S, Dare, P & Jones, S 2005, ‘Automatic classification of land cover features with high resolution 

imagery and LiDAR data: an object-oriented approach’. In: Proceedings of SSC2005 spatial intelligence, 

innovation and praxis: the national biennial conference of the spatial sciences institute, Melbourne: 

Melbourne: Spatial Science Institute, pp. 512-522. 

Townshend, JRG, Huang, C, Kalluri, SNV, Defries, RS, Liang, S, & Yang, K 2000, ‘Beware of per-pixel 

characterization of land cover’, International Journal of remote sensing, vol. 21, no. 4, pp. 839-843. 

Visual Learning Systems, Inc. 2002, Using feature analystTM to perform object-specific change 

detection, Missoula, Montana: Visual Learning Systems, viewed 13 October 2017, 

<http://www.geosystems.pl/upload/zalaczniki/VLS_arcgis_extension.pdf> 

Warner, TA, Foody, GM, & Nellis, MD 2009, The SAGE handbook of Remote Sensing, Sage Publications 

Ltd, London, UK. 

Xiaoxia, S, Jixian, Z & Zhengjun, L 2004, ‘An object-oriented classification method on high resolution 

satellite data’. In: Proceedings of the 25th Asian conference on remote sensing. Chiang Mai, Thailand, 22–26 

November 2004, 347–350. 

Zhang, J 2010, ‘Multi-source remote sensing data fusion: status and trends’. International Journal of 

Image and Data Fusion, vol. 1, no. 1, pp. 5-24. 

 

http://www.geosystems.pl/upload/zalaczniki/VLS_arcgis_extension.pdf

